【總結(jié)】高三數(shù)學(xué)組學(xué)習(xí)目標(biāo)?在了解數(shù)列概念的基礎(chǔ)上,掌握幾種常見遞推數(shù)列通項公式的求解方法?理解求通項公式的原理?體會各種方法之間的異同,感受事物與事物之間的相互聯(lián)系2021是這樣考的?1.(2021年高考新課標(biāo)1(理))若數(shù)列{an}的前n項和為Sn=,則數(shù)列{an}的通項公
2025-05-15 02:40
【總結(jié)】?要點183。疑點183??键c?課前熱身?能力183。思維183。方法?延伸183。拓展?誤解分析第2課時等差、等比數(shù)列的通項及求和公式要點183。疑點183??键c(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S(k-1)n…成等差(
2025-08-16 01:49
【總結(jié)】一、請回答下列概念:1.數(shù)列的定義:2.數(shù)列的通項公式:::按一定次序排列的一列數(shù)叫做數(shù)列.如果數(shù)列的第n項與n之間的關(guān)系可以用一個公式來表示,那么這個公式就叫做這個數(shù)列的通項公式.
2024-11-12 17:11
【總結(jié)】......數(shù)列的通項公式教學(xué)目標(biāo):使學(xué)生掌握求數(shù)列通項公式的常用方法.教學(xué)重點:運用疊加法、疊乘法、構(gòu)造成等差或等比數(shù)列及運用求數(shù)列的通項公式.教學(xué)難點:構(gòu)造成等差或等比數(shù)列及運用求數(shù)列的通項公式的方法.教學(xué)時數(shù):2課
2025-04-17 04:59
【總結(jié)】通項公式求解方法大全:我現(xiàn)在總結(jié)出幾種求解數(shù)列通項公式的方法,希望能對大家有幫助。一、觀察法已知數(shù)列前若干項,求該數(shù)列的通項時,一般對所給的項觀察分析,尋找規(guī)律,從而根據(jù)規(guī)律寫出此數(shù)列的一個通項。:__________(答:)例2、(1)觀察數(shù)列的結(jié)構(gòu)特征,每一項都是一個分式,分母是數(shù)列2,4,8,16,32,…,可用項數(shù)表示為分子是數(shù)列1,3,7,1
2025-03-25 05:12
【總結(jié)】等比數(shù)列的通項公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)列的一般形式可以寫成:,1
2024-11-11 08:58
【總結(jié)】等差數(shù)列的通項公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)
2024-11-11 21:08
【總結(jié)】等比數(shù)列的定義)2(?n)1(?nqaann??12.qaann??1或1.qaaaaaaaaaann????????145342312如果等比數(shù)列{an}的首項是a1,公比是q,則11??
2025-07-25 15:34
【總結(jié)】海豚教育個性化簡案學(xué)生姓名:年級:科目:授課日期:月日上課時間:時分------時分合計:小時教學(xué)目標(biāo)1.復(fù)習(xí)等差數(shù)列和等比數(shù)列的基本定義;2.學(xué)會通過作差法
2025-08-04 10:15
【總結(jié)】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第2課時等差、等比數(shù)列的通項及求和公式要點·疑點·考點(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S
2025-08-05 21:12
【總結(jié)】等比數(shù)列通項公式問題情景如何寫出它的第10項呢???na??,16,8,4,2,110a問題1:觀察等比數(shù)列:??na1aqnna問題2:設(shè)是一個首項為,公比為的等比數(shù)列,你能寫出它的第項嗎?師生共同探討:11113423
2025-05-03 02:48
2025-08-16 02:28
2025-05-12 21:08
【總結(jié)】,而在考試尤其是高考中數(shù)列題目大多數(shù)又比較難,有的題目很難、很復(fù)雜,顯示出很大的反差。使得在學(xué)習(xí)數(shù)列時感到很困難。同時,數(shù)列題目種類繁多,很難歸類。為了便于研究數(shù)列問題,找出其中某些常見數(shù)列題目的解題思路、規(guī)律、方法,現(xiàn)把一些常見的數(shù)列通項公式的求法作以下歸類。.一、作差求和法m例1在數(shù)列{}中,,,求通項公式.解:原遞推式可化為:則,……,逐項相加
2024-09-01 21:37
【總結(jié)】......數(shù)列通項公式的常見求法數(shù)列在高中數(shù)學(xué)中占有非常重要的地位,每年高考都會出現(xiàn)有關(guān)數(shù)列的方面的試題,一般分為小題和大題兩種題型,而數(shù)列的通項公式的求法是??嫉囊粋€知識點,一般常出現(xiàn)在大題的第一小問中,因此掌握好數(shù)列通項公式的
2025-06-26 05:23