【總結(jié)】等比數(shù)列的前n項和古印度國王舍罕王打算獎賞國際象棋的發(fā)明人——宰相西薩·班·達依爾。國王問他想要什么,發(fā)明者說:“請在第一個格子里放上1粒麥子,在第二個格子里放上2粒麥子,在第三個格子里放上4粒麥子,在第四個格子里放上8粒麥子,依此類推,每個格子里放的麥粒數(shù)都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子
2025-07-21 17:18
【總結(jié)】等比數(shù)列的前n項和第1課時一、新課導(dǎo)入:633222221???????S即,①646332222222???????S,②②-①得即.,12264???SS1264??S由此對于一般的等比數(shù)列,其前項和n112111??????nnqaqaqaaS
2025-08-16 01:37
【總結(jié)】浮梁一中:余盛洋QQ:85431339北師大版高中數(shù)學(xué)必修5第一章《數(shù)列》浮梁一中余盛洋制作浮梁一中:余盛洋QQ:85431339一、教學(xué)目標(biāo):1、知識與技能:⑴了解現(xiàn)實生活中存在著一類特殊的數(shù)列;⑵理解等比數(shù)列的概念,探索并掌握等比數(shù)列的通項公式;⑶能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等比關(guān)系,并能用有關(guān)的知識解決相應(yīng)的實際問題;⑷
2024-11-21 02:05
【總結(jié)】1等差數(shù)列求和公式:(1)Sn=n(a1+an)/2(2)Sn=na1+n(n-1)d/22等比數(shù)列求和公式:(1)Sn=1-qa1(1-qn)q≠1q≠1(2)Sn=1-qa1-anq當(dāng)q=1時,Sn=na1練習(xí):求和1.1+2+3+……+n答案:Sn=n
2025-05-12 17:19
【總結(jié)】等比數(shù)列(一)復(fù)習(xí)引入觀察這幾個數(shù)列,看有何共同特點?1,2,4,8,16,…,263;;81,41,21,1?1,20,202,203,5,5,5,5,……;.①②③④復(fù)習(xí)引入觀察這幾個
2025-07-21 04:00
【總結(jié)】重慶市萬州高級中學(xué)曾國榮2020年12月16日星期三重慶市萬州高級中學(xué)曾國榮§高2020級數(shù)學(xué)復(fù)習(xí)課件等比數(shù)列定義:一般的,如果一個數(shù)列從第2項起,每一項與它前一項的比都等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列.
2024-11-09 12:24
【總結(jié)】等差、等比數(shù)列的求和公式一、考綱要求:掌握等差的求和公式、等比數(shù)列的求和公式.二、教學(xué)目標(biāo):1、掌握等差數(shù)列前n項和公式及其推導(dǎo)過程2、掌握等比數(shù)列前n項和公式及其推導(dǎo)過程3、能熟練利用公式解決相關(guān)問題三、重點難點掌握公式的推導(dǎo)方法和公式的應(yīng)用教學(xué)過程:知識梳理:1.(1)等差數(shù)列的前項和(倒序相加法):公式1:公式2:;(2)若數(shù)
2025-06-07 21:56
【總結(jié)】n重點難點n重點:等比數(shù)列的定義、通項公式、前n項的和及性質(zhì)n難點:等比數(shù)列的應(yīng)用n知識歸納n1.等比數(shù)列的定義n一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),這個數(shù)列就叫做等比數(shù)列.qm-nn一、方程的思想n等比數(shù)列中有五個量a1、n、q、an、
2025-04-30 18:12
【總結(jié)】等比數(shù)列的前n項和(一)李超2020年9月(一)知識回顧::11???nnqaa:②在等比數(shù)列{}中,若則()naqpnm???qpnmaaaa?????Nqpnm
2024-09-28 12:18
【總結(jié)】等比數(shù)列通項公式:等比數(shù)列的定義:等比數(shù)列的性質(zhì):各個格子里的麥粒數(shù)依次是發(fā)明者要求的麥??倲?shù)就是1+2+23+…+263=國王能否滿足發(fā)明者的要求?1,2,22,…,263如何求出這個和式的具體數(shù)值呢?問題1:發(fā)明者要求的麥粒總數(shù)是:S64=1+2+22+…+263問題2:一般地,對于等比數(shù)列一般地
2025-08-05 15:48
【總結(jié)】等比數(shù)列的前n項和(二)復(fù)習(xí)引入1.等比數(shù)列求和公式復(fù)習(xí)引入1.等比數(shù)列求和公式??????????)1(1)1()1(11qqqaqnaSnn復(fù)習(xí)引入1.等比數(shù)列求和公式?????????
2025-07-21 04:14
【總結(jié)】第3講等比數(shù)列及其前n項和【2022年高考會這樣考】1.以等比數(shù)列的定義及等比中項為背景,考查等比數(shù)列的判定.2.考查通項公式、前n項和公式以及性質(zhì)的應(yīng)用.【復(fù)習(xí)指導(dǎo)】本節(jié)復(fù)習(xí)時,緊扣等比數(shù)列的定義,推導(dǎo)相關(guān)的公式與性質(zhì),通過基本題型的訓(xùn)練,掌握通性、通法.基礎(chǔ)梳理1.等比數(shù)列的定義如果一個數(shù)列從
2025-04-30 04:33
【總結(jié)】課時教學(xué)設(shè)計首頁授課教師:授課時間:10年9月9日課題課型新授課第幾課時2課時教學(xué)目標(biāo)(三維)項和公式,達到靈活應(yīng)用的程度項和的性質(zhì),培養(yǎng)學(xué)生的類比歸納能力,提高學(xué)生的數(shù)學(xué)素養(yǎng)教學(xué)重點與難點
2025-08-18 16:48
【總結(jié)】等比數(shù)列的前n項和一、等比數(shù)列的前n項和公式1.乘法運算公式法∵Sn=a1+a2+a3+…+an=a1+a1q+a1q2+…+a1qn-1=a1(1+q+q2+…+qn-1)=a1·=,∴Sn=.2.方程法∵Sn=a1+a1q+a1q2+…+a1qn-1=a1+q(a1+a1q+…+a1qn-2)=a1+q(a1+a1q+…+a1qn-1-
2025-06-29 16:17
【總結(jié)】高考數(shù)學(xué)總復(fù)習(xí)北師大版第6章數(shù)列高考數(shù)學(xué)總復(fù)習(xí)北師大版第6章第三節(jié)第三節(jié)等比數(shù)列高考數(shù)學(xué)總復(fù)習(xí)北師大版第6章第三節(jié)高考數(shù)學(xué)總復(fù)習(xí)北師大版第6章第三節(jié)考
2025-05-04 08:27