【總結(jié)】數(shù)列的通項(xiàng)公式(高三復(fù)習(xí)課)—以本為據(jù),發(fā)散思維一、回顧?等差數(shù)列的定義:一個(gè)數(shù)列從第二項(xiàng)起,它的每一項(xiàng)與前一項(xiàng)的差為常數(shù),那么這個(gè)數(shù)列為等差數(shù)列。其通項(xiàng)為:dnaan)1(1???是如何推導(dǎo)出來的呢??由定義:
2024-11-10 00:27
【總結(jié)】數(shù)列的概念、通項(xiàng)公式和遞推公式期末復(fù)習(xí)一、數(shù)列的概念:數(shù)列.項(xiàng)是關(guān)于項(xiàng)數(shù)的一種特殊的函數(shù)關(guān)系,只是定義域是自小到大的正整數(shù)而已.:通項(xiàng)公式法,遞推公式法,前n項(xiàng)和法,和圖像法等.(圖像是自變量取正整數(shù)的一些孤立的點(diǎn))二、數(shù)列的通項(xiàng)公式:???Nnnfananannn),(:.
2024-11-09 03:30
【總結(jié)】高三數(shù)學(xué)組學(xué)習(xí)目標(biāo)?在了解數(shù)列概念的基礎(chǔ)上,掌握幾種常見遞推數(shù)列通項(xiàng)公式的求解方法?理解求通項(xiàng)公式的原理?體會(huì)各種方法之間的異同,感受事物與事物之間的相互聯(lián)系2021是這樣考的?1.(2021年高考新課標(biāo)1(理))若數(shù)列{an}的前n項(xiàng)和為Sn=,則數(shù)列{an}的通項(xiàng)公
2025-05-15 02:40
【總結(jié)】等比、差數(shù)列前n項(xiàng)和的性質(zhì){an}為等比數(shù)列,Sn為其前n項(xiàng)和,則SK,S2K-SK,S3K-S2K,···仍構(gòu)成等比數(shù)列,且有(S2K-SK)2=SK·(S3K-S2K)例{an}中,S10=10,S20=30,求S30.例{an}中,S10=10,S20=30,求S30.{an}為等差
2025-04-30 18:12
【總結(jié)】生活中的數(shù)列1.放射性物質(zhì)鐳的半衰期為1620年,如果從現(xiàn)有的10克鐳開始,每隔1620年,剩余量依次為10000×,10000×,10000×,…10000×2.某人年初投資10000元,如果年收益率為5%,那么按照復(fù)利,5年內(nèi)各年末的本利和依次為
2025-05-12 21:08
【總結(jié)】等差數(shù)列的通項(xiàng)公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,第2項(xiàng)用表示,…,第n項(xiàng)用表示,…,數(shù)列的一般形式可以寫成:…
2024-11-09 00:27
【總結(jié)】名稱等差數(shù)列概念常數(shù)性質(zhì)通項(xiàng)通項(xiàng)變形dnaan)1(1???dknaakn)(???),(*Nkn?舊知回顧從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù)公差(d)d可正,可負(fù),且可以為零中項(xiàng)公式22baAAba????或
2025-02-21 09:52
【總結(jié)】數(shù)列的通項(xiàng)公式及求和通項(xiàng)的求法{特殊數(shù)列{等差數(shù)列等比數(shù)列一般數(shù)列an=S1(n=1),Sn-Sn-1(n≥2).累加若an-an-1=f(n)累積1?nnaa=f(n)湊等比an=pan-1+q猜想、
2025-07-25 15:41
【總結(jié)】成才之路·數(shù)學(xué)路漫漫其修遠(yuǎn)兮吾將上下而求索人教A版·必修5成才之路·數(shù)學(xué)·人教A版·必修5第二章數(shù)列第二章數(shù)列成才之路·數(shù)學(xué)·人教A版·必修5第二章
2025-04-30 04:33
【總結(jié)】高一數(shù)學(xué)必修五第二章《數(shù)列》數(shù)列求和復(fù)習(xí)鞏固;;;;;:一個(gè)數(shù)列的前n項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和,若通項(xiàng)形如an=(-1)nf(n)的擺動(dòng)數(shù)列求和,可用此法。求數(shù)列Sn=12-22+32-42+…+(-1)n-
2025-01-07 11:54
【總結(jié)】等比數(shù)列的通項(xiàng)公式(2)陽光國際學(xué)校高中部數(shù)學(xué)組復(fù)習(xí)一.等比數(shù)列的定義二.等比數(shù)列的通項(xiàng)公式an=a1qn-1q0時(shí),數(shù)列各項(xiàng)同號q0時(shí),數(shù)列各項(xiàng)正負(fù)相間①{an}是等比數(shù)列?=q(q是常數(shù),n∈N*
2024-11-12 16:41
【總結(jié)】高考遞推數(shù)列題型分類歸納解析各種數(shù)列問題在很多情形下,就是對數(shù)列通項(xiàng)公式的求解。特別是在一些綜合性比較強(qiáng)的數(shù)列問題中,數(shù)列通項(xiàng)公式的求解問題往往是解決數(shù)列難題的瓶頸。我現(xiàn)在總結(jié)出幾種求解數(shù)列通項(xiàng)公式的方法,希望能對大家有幫助。類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例1.已知
2025-03-25 05:12
【總結(jié)】由遞推公式求通項(xiàng)公式的常用方法由數(shù)列的遞推公式求通項(xiàng)公式是高中數(shù)學(xué)的重點(diǎn)問題,也是難點(diǎn)問題,它是歷年高考命題的熱點(diǎn)題。對于遞推公式確定的數(shù)列的求解,通??梢酝ㄟ^遞推公式的變換,轉(zhuǎn)化為等差數(shù)列或等比數(shù)列問題,有時(shí)也用到一些特殊的轉(zhuǎn)化方法與特殊數(shù)列。方法一:累加法形如an+1-an=f(n)(n=2,3,4,…),且f(1)+f(2)+…+f(n-1)可求,則用累加法求an。有時(shí)若不能直
2025-06-18 13:57
【總結(jié)】數(shù)列前n項(xiàng)和的求法求數(shù)列前n項(xiàng)和是數(shù)列的重要內(nèi)容,也是一個(gè)難點(diǎn)。求等差(等比)數(shù)列的前n項(xiàng)和,主要是應(yīng)用公式。對于一些既不是等差也不是等比的數(shù)列,就不能直接套用公式,而應(yīng)根據(jù)它們的特點(diǎn),對其進(jìn)行變形、轉(zhuǎn)化,利用化歸的思想,來尋找解題途徑。一、拆項(xiàng)轉(zhuǎn)化法例1已知數(shù)列
2025-08-05 07:30
【總結(jié)】等差數(shù)列的概念與通項(xiàng)公式從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都是同一個(gè)常數(shù).2)某劇場前10排的座位數(shù)分別是:38,40,42,44,46,48,50,52,54,56觀察這些數(shù)列有什么共同特點(diǎn)?3)3,0,-3,-6,-9,-12,……4)2,4,6,8,105)1,1,1,1,1,
2024-10-16 20:25