【總結(jié)】?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第2課時(shí)等差、等比數(shù)列的通項(xiàng)及求和公式要點(diǎn)·疑點(diǎn)·考點(diǎn)(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S
2024-08-14 21:12
【總結(jié)】復(fù)習(xí):等比數(shù)列{an}an+1an=q(定值)(1)等比數(shù)列:(2)通項(xiàng)公式:an=a1?qn-1(4)重要性質(zhì):n-man=am?qm+n=p+qan?aq?am=ap注:以上m,n,p,q均為自然數(shù)成等比數(shù)列(3)bGa,,)0(,2??ababG
2025-05-10 08:13
【總結(jié)】等比數(shù)列的概念(一)等比數(shù)列的通項(xiàng)公式(一)課時(shí)目標(biāo),能夠利用定義判斷一個(gè)數(shù)列是否為等比數(shù)列.2.掌握等比數(shù)列的通項(xiàng)公式并能簡(jiǎn)單應(yīng)用.,能夠應(yīng)用等比中項(xiàng)的定義解決有關(guān)問(wèn)題.1.如果一個(gè)數(shù)列從第____項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的____都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的___
2024-12-05 10:14
【總結(jié)】等差數(shù)列和等比數(shù)列的應(yīng)用復(fù)習(xí)一、課堂練習(xí):?????????8276543aaaaaaaan則,中,若等差數(shù)列.,則,,,,五項(xiàng)分別為:在等比數(shù)列中,有連續(xù)12cbab=a=c=ac=;?
2024-11-09 01:17
【總結(jié)】1“一尺之棰,日取其半,萬(wàn)世不竭?!睙o(wú)窮等比數(shù)列各項(xiàng)和的概念無(wú)窮等比數(shù)列各項(xiàng)和的概念1證明:無(wú)窮等比數(shù)列各項(xiàng)和的概念證明:無(wú)窮等比數(shù)列各項(xiàng)和的概念公式:無(wú)窮等比數(shù)列各項(xiàng)和的概念無(wú)窮等比數(shù)列各項(xiàng)和的應(yīng)用應(yīng)用:發(fā)現(xiàn)四:化循環(huán)小數(shù)為分?jǐn)?shù)的一般方法:
2024-11-12 19:04
【總結(jié)】等比數(shù)列的前n項(xiàng)和(第一課時(shí))等比數(shù)列的前n項(xiàng)和等比數(shù)列的前項(xiàng)和一、教材分析二、目標(biāo)分析三、過(guò)程分析四、教法分析五、評(píng)價(jià)分析一、教材分析一、教材分析1.從在教材中的地位與作用來(lái)看《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,
2024-11-09 12:46
【總結(jié)】等比數(shù)列的前n項(xiàng)和(二)復(fù)習(xí)引入1.等比數(shù)列求和公式復(fù)習(xí)引入1.等比數(shù)列求和公式??????????)1(1)1()1(11qqqaqnaSnn復(fù)習(xí)引入1.等比數(shù)列求和公式?????????
2024-07-30 04:14
【總結(jié)】
2024-11-12 17:10
【總結(jié)】等比數(shù)列1、觀察下列數(shù)列,指出它們的共同特征:(1)1,2,4,8,….(2)….(3)1,20,202,203,….(4)活期存入10000元,年利率是%,按照復(fù)利,5年內(nèi)各年末本利和分別是10000(1+),10000(1+)2,10000(1+)3,1
2024-07-30 17:18
【總結(jié)】等比數(shù)列的前n項(xiàng)和第1課時(shí)一、新課導(dǎo)入:即,①,②②-①得即.由此對(duì)于一般的等比數(shù)列,其前項(xiàng)和,如何化簡(jiǎn)?求數(shù)列:二.新課講解:Sn=a1+a1q+a1q2+…+a1qn-2+a1qn-1qSn=a1q+a1q
2024-10-16 20:25
【總結(jié)】等比數(shù)列的前n項(xiàng)和古印度國(guó)王舍罕王打算獎(jiǎng)賞國(guó)際象棋的發(fā)明人——宰相西薩·班·達(dá)依爾。國(guó)王問(wèn)他想要什么,發(fā)明者說(shuō):“請(qǐng)?jiān)诘谝粋€(gè)格子里放上1粒麥子,在第二個(gè)格子里放上2粒麥子,在第三個(gè)格子里放上4粒麥子,在第四個(gè)格子里放上8粒麥子,依此類(lèi)推,每個(gè)格子里放的麥粒數(shù)都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子
【總結(jié)】等比數(shù)列的前n項(xiàng)和目的要求?1.掌握等比數(shù)列的前n項(xiàng)和公式。?2.掌握前n項(xiàng)和公式的推導(dǎo)方法。?3.對(duì)前n項(xiàng)和公式能進(jìn)行簡(jiǎn)單應(yīng)用。重點(diǎn)難點(diǎn)?重點(diǎn):等比數(shù)列前n項(xiàng)和公式的推導(dǎo)與應(yīng)用。?難點(diǎn):前n項(xiàng)和公式的推導(dǎo)思路的尋找。重點(diǎn)難點(diǎn)復(fù)
2024-11-17 17:13
【總結(jié)】等比數(shù)列的前n項(xiàng)和第1課時(shí)一、新課導(dǎo)入:633222221???????S即,①646332222222???????S,②②-①得即.,12264???SS1264??S由此對(duì)于一般的等比數(shù)列,其前項(xiàng)和n112111??????nnqaqaqaaS
2024-08-25 01:37
【總結(jié)】等比數(shù)列的前n項(xiàng)和教學(xué)過(guò)程導(dǎo)入新課師國(guó)際象棋起源于古代印度.相傳國(guó)王要獎(jiǎng)賞國(guó)際象棋的發(fā)明者.這個(gè)故事大家聽(tīng)說(shuō)過(guò)嗎?生知道一些,踴躍發(fā)言師“請(qǐng)?jiān)诘谝粋€(gè)格子里放上1顆麥粒,第二個(gè)格子里放上2顆麥粒,第三個(gè)格子里放上4顆麥粒,以此類(lèi)推.每一個(gè)格子里放的麥粒都是前一個(gè)格子里放的麥粒的2倍.直到第64個(gè)
2024-11-19 21:23
【總結(jié)】浮梁一中:余盛洋QQ:85431339北師大版高中數(shù)學(xué)必修5第一章《數(shù)列》浮梁一中余盛洋制作浮梁一中:余盛洋QQ:85431339一、教學(xué)目標(biāo):1、知識(shí)與技能:⑴了解現(xiàn)實(shí)生活中存在著一類(lèi)特殊的數(shù)列;⑵理解等比數(shù)列的概念,探索并掌握等比數(shù)列的通項(xiàng)公式;⑶能在具體的問(wèn)題情境中,發(fā)現(xiàn)數(shù)列的等比關(guān)系,并能用有關(guān)的知識(shí)解決相應(yīng)的實(shí)際問(wèn)題;⑷
2024-11-21 02:05