【總結(jié)】等比數(shù)列通項公式:等比數(shù)列的定義:等比數(shù)列的性質(zhì):各個格子里的麥粒數(shù)依次是發(fā)明者要求的麥粒總數(shù)就是1+2+23+…+263=國王能否滿足發(fā)明者的要求?1,2,22,…,263如何求出這個和式的具體數(shù)值呢?問題1:發(fā)明者要求的麥粒總數(shù)是:S64=1+2+22+…+263問題2:一般地,對于等比數(shù)列一般地
2024-08-14 15:48
【總結(jié)】等比數(shù)列的前n項和(一)李超2020年9月(一)知識回顧::11???nnqaa:②在等比數(shù)列{}中,若則()naqpnm???qpnmaaaa?????Nqpnm
2024-09-28 12:18
【總結(jié)】等比數(shù)列的前n項和一、等比數(shù)列的前n項和公式1.乘法運算公式法∵Sn=a1+a2+a3+…+an=a1+a1q+a1q2+…+a1qn-1=a1(1+q+q2+…+qn-1)=a1·=,∴Sn=.2.方程法∵Sn=a1+a1q+a1q2+…+a1qn-1=a1+q(a1+a1q+…+a1qn-2)=a1+q(a1+a1q+…+a1qn-1-
2025-06-29 16:17
【總結(jié)】2.等比數(shù)列的前n項和學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入九章算術(shù)有一道“耗子穿墻”的問題:今有垣厚5尺,兩鼠相對,大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半,問幾何日相逢?各穿幾何?在實際上是一個等比數(shù)列求和的問題,他的解法也很
2024-11-17 23:16
【總結(jié)】等比數(shù)列的前n項和(二)復(fù)習(xí)引入1.等比數(shù)列求和公式復(fù)習(xí)引入1.等比數(shù)列求和公式??????????)1(1)1()1(11qqqaqnaSnn復(fù)習(xí)引入1.等比數(shù)列求和公式?????????
2024-07-30 04:14
【總結(jié)】等比數(shù)列的前n項和一、教學(xué)目標(biāo)1、掌握等比數(shù)列的前n項和公式,能用等比數(shù)列的前n項和公式解決相關(guān)問題。2、通過等比數(shù)列的前n項和公式的推導(dǎo)過程,體會錯位相減法以及分類討論的思想方法。3、通過對等比數(shù)列的學(xué)習(xí),發(fā)展數(shù)學(xué)應(yīng)用意識,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值,發(fā)展數(shù)學(xué)的理性思維。二、教學(xué)重點與難點重點:掌握等比數(shù)列的前n項和公式,能用等比數(shù)列的前n項和公式解決相關(guān)問題
2025-04-17 08:31
【總結(jié)】《等比數(shù)列的前n項和》南靖一中:曾燕華一、教學(xué)內(nèi)容分析在《數(shù)列》一章中,《等比數(shù)列的前n項和》是一項重要的基礎(chǔ)內(nèi)容,從知識體系來看,它不僅是《等差數(shù)列的前n項和》與《等比數(shù)列》的順延,也是前面所學(xué)《函數(shù)》的延續(xù),實質(zhì)上是一種特殊的函數(shù),而且還為后繼深入學(xué)習(xí)提供了知識基礎(chǔ),錯位相減法是一種重要的數(shù)學(xué)思想方法,是求解一類混合數(shù)列前n項和的重要方法,因此,本節(jié)具有承上啟下的作用;
2025-04-28 14:11
【總結(jié)】主講老師:陳震等比數(shù)列的前n項和(一)復(fù)習(xí)引入1.等比數(shù)列的定義:2.等比數(shù)列通項公式:)0,(111????qaqaann)0,(1????qaqaamnmn復(fù)習(xí)引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2025-01-07 11:53
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《等比數(shù)列的前n項和》審校:王偉教學(xué)目標(biāo)?知識與技能:掌握等比數(shù)列的前n項和公式,并用公式解決實際問題?過程與方法:由研究等比數(shù)列的結(jié)構(gòu)特點推導(dǎo)出等比數(shù)列的前n項和公式?情態(tài)與價值:從“錯位相減法”這種算法中,體會“消除差別”,培養(yǎng)化簡的能力?(
2024-11-10 00:23
【總結(jié)】等比數(shù)列的概念(二)等比數(shù)列的通項公式(二)課時目標(biāo).,能用性質(zhì)靈活解決問題.1.一般地,如果m,n,k,l為正整數(shù),且m+n=k+l,則有______________,特別地,當(dāng)m+n=2k時,am·an=________.2.在等比數(shù)列{an}中,每隔k項(
2024-12-05 10:14
【總結(jié)】等比數(shù)列的概念(一)等比數(shù)列的通項公式(一)課時目標(biāo),能夠利用定義判斷一個數(shù)列是否為等比數(shù)列.2.掌握等比數(shù)列的通項公式并能簡單應(yīng)用.,能夠應(yīng)用等比中項的定義解決有關(guān)問題.1.如果一個數(shù)列從第____項起,每一項與它的前一項的____都等于同一個常數(shù),那么這個數(shù)列叫做等比數(shù)列.這個常數(shù)叫做等比數(shù)列的___
【總結(jié)】等比數(shù)列的前n項和貴池中學(xué)金華芬小明:在一個月中每天比前一天多給你1萬元小林:我第一天還1分錢,以后每天還的錢是前一天的2倍一、問題探究引入小林:哈哈!這么多錢我可賺大了,我要是定了2個月,3個月那該多好!第1天支出1分錢收入1萬元第2天支出2分錢收入2萬
2025-01-08 00:05
【總結(jié)】等比數(shù)列的前項和教學(xué)設(shè)計江西省樟樹中學(xué)李志紅一、教材分析《等比數(shù)列的前項和》是高中數(shù)學(xué)北師大版必修第一章第三節(jié)的內(nèi)容,,不僅加深對函數(shù)思想的理解,也為以后學(xué)習(xí)數(shù)列求和、,比如分期付款或按復(fù)利計算的儲蓄問題等.二、學(xué)情分析.學(xué)生經(jīng)過高中一年的教學(xué)訓(xùn)練,思維比較活躍,計算能力較強,邏輯推理和分析概括的能力也有了一定的提高,但思考問題時還是不夠深入、不夠嚴(yán)謹..學(xué)生學(xué)習(xí)
【總結(jié)】等比數(shù)列求和古印度舍罕王打算重賞大臣達依爾——國際象棋發(fā)明人。這位大臣說:“陛下,請您在這張棋盤上的第一格內(nèi),賞給我1粒麥子,在第2格內(nèi)給2粒,第3格內(nèi)給4粒,依次類推,每小格內(nèi)的麥粒數(shù)都是前1小格的2倍,直到64個格子。請給我足夠的麥粒以實現(xiàn)上述要求吧!”國王一聽,認為大臣的這個要求不高,就欣然同意了。
2024-11-03 15:44
2024-11-11 02:52