【總結(jié)】八年級上冊等腰三角形(第4課時)課件說明?本節(jié)課在學習了軸對稱、等邊三角形的性質(zhì)及判定的基礎(chǔ)上,探究直角三角形的一條特殊性質(zhì),它反映了直角三角形中的邊角關(guān)系.本節(jié)課是等邊三角形性質(zhì)的簡單運用,同時也為九年級學習銳角三角函數(shù)作了一定的知識儲備.?學習目標:1.探索含30°角
2024-11-24 15:53
【總結(jié)】優(yōu)思數(shù)學-新人教版初中數(shù)學專題網(wǎng)站優(yōu)思數(shù)學網(wǎng)系列資料版權(quán)所有@優(yōu)思數(shù)學網(wǎng)117、等腰三角形要點一、等腰三角形的性質(zhì)及判定一、選擇題1.(2021·寧波中考)等腰直角三角形的一個底角的度數(shù)是()A.30°B.45°
2025-02-02 14:07
【總結(jié)】第20講┃等腰三角形第20講┃考點聚焦考點聚焦考點1等腰三角形的概念與性質(zhì)定義有____相等的三角形是等腰三角形.相等的兩邊叫腰,第三邊為底性質(zhì)軸對稱性等腰三角形是軸對稱圖形,有____條對稱軸定理1等腰三角形的兩個底角相等(簡稱為:__________)
2025-07-20 09:12
【總結(jié)】等腰三角形一、選擇題1、(2012年江西南昌十五校聯(lián)考)等腰三角形ABC在直角坐標系中,底邊的兩端點坐標分別是(-3,m),(5,m),則能確定的是它的()A.一腰的長B.底邊的長C.周長D.面積答案:B2、(2012年春期福集鎮(zhèn)青龍中學中考模擬)已知:一等腰三角形的兩邊長滿足方程組則此等腰三角形的周長為()
2025-01-14 01:09
【總結(jié)】......---通榆縣第十中學杜建軍【教學目標】理解并掌握等腰三角形的定義,探索等腰三角形的性質(zhì)和判定方法;能夠用等腰三角形的知識解決相應(yīng)的數(shù)學問題. 在探索等腰三角形的性質(zhì)和判定的過程中體會知識
2025-04-17 07:45
【總結(jié)】等腰三角形的軸對稱性結(jié)論:等腰三角形是軸對稱圖形DCBA結(jié)論2結(jié)論三頂角平分線所在直線是它的對稱軸底邊上的高所在直線是它的對稱軸底邊上的中線所在直線是它的對稱軸符號語言:在ΔABC中結(jié)論:等腰三角形的兩個底角相等簡稱:等邊對等角CBA∵AB=AC∴∠B=
2024-11-09 12:24
【總結(jié)】教學設(shè)計(教案)模板基本信息學科數(shù)學年級八年級教學形式教師馮再春單位潛山縣余井中學課題名稱等腰三角形(第一課時)學情分析學生已經(jīng)具備軸對稱圖形的知識。本節(jié)課的知識障礙是證明過程中輔助線的添加,因此在教學過程中要善于利用等腰三角形的對稱性引導學生添加輔助線。教
2024-11-24 19:47
【總結(jié)】等腰三角形等腰三角形(一)教學目標(一)教學知識點1.等腰三角形的概念.2.等腰三角形的性質(zhì).3.等腰三角形的概念及性質(zhì)的應(yīng)用.(二)能力訓練要求1.經(jīng)歷作(畫)出等腰三角形的過程,從軸對稱的角度去體會等腰三角形的特點.2.探索并掌握等腰三角形的性質(zhì).
2024-11-19 00:44
【總結(jié)】等腰三角形(復(fù)習教案)教學目標·知識與技能目標建立知識框架結(jié)構(gòu)圖,了解掌握等腰三角形知識。復(fù)習等腰三角形有關(guān)定理的探索與證明,證明的思路和方法。能利用等腰三角形的有關(guān)定理,證明線段相等、角相等及直線垂直等?!み^程方法通過回顧有關(guān)定理的證明,進一步掌握綜合法的證明法。提高學生用規(guī)定數(shù)學語言表達
2025-01-09 09:11
【總結(jié)】快樂學習,盡在中小學教育網(wǎng)破解等腰三角形“三招”陶乃文1.分清“腰、底”例1.已知一個等腰三角形的一邊長為5,另一邊長為7,則這個等腰三角形的周長是()A.12B.17C.19D.17或19分析:題中并未說明5是底邊,還是腰,應(yīng)分兩種情況討論。解
2024-09-05 16:20
【總結(jié)】等腰三角形的判定臨海中學初二備課組等腰三角形的判定學習目標自學指導討論練習課堂作業(yè)我們在上一節(jié)學習了等腰三角形的性質(zhì)?,F(xiàn)在你能回答我一些問題嗎?一、復(fù)習:1、等腰三角形的性質(zhì)定理是什么?等腰三角形的兩個底角相等。(可以簡稱:等邊對等角)2、這個定理
2024-08-10 18:01
【總結(jié)】等腰三角形的性質(zhì)數(shù)科院李紫20222202225ABC⑴由“兩邊相等”得到“等腰三角形”.∵△ABC中,AB=AC,∴△ABC是等腰三角形.⑵由“等腰三角形”得到“兩邊相等”.如圖,∵△ABC是等腰三角
2024-08-10 13:41
【總結(jié)】復(fù)習引入兩腰相等;等腰三角形有哪些特征呢?ABC,簡稱“在同一個三角形中,等邊對等角”;、底邊上的中線和底邊上的高互相重合。簡稱“等腰三角形三線合一”,對稱軸是底邊的中垂線。?:ΔABC中,已知AB=AC,?圖中有哪些角相等?∠B=∠C在同一個三角形
【總結(jié)】等腰三角形兩腰相等;等腰三角形兩底角相等;等腰三角形“三線合一”;……問題1:小區(qū)內(nèi)有一個三角形小花壇,現(xiàn)在想把它分割成兩個三角形,使之可以種上不同的花。你會怎么分?ABCP問題2:如果要分割成兩個等腰三角形呢?原三角形的角度不知道。無法分!從頂點引一條線段問題3:如果花壇
2024-11-24 15:15
【總結(jié)】等腰三角形性質(zhì)的應(yīng)用——復(fù)習課如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。ABCD121.等邊對等角的應(yīng)用ABCD12解:∵AB=AC,∴∠ABC=∠C又∵BD=BC=AD,∴∠C=∠