【總結(jié)】第九章圓錐曲線試題部分1.【2020高考新課標(biāo)1,文5】已知橢圓E的中心為坐標(biāo)原點(diǎn),離心率為12,E的右焦點(diǎn)與拋物線2:8Cyx?的焦點(diǎn)重合,,AB是C的準(zhǔn)線與E的兩個(gè)交點(diǎn),則AB?()(A)3(B)6(C)9(D)122.
2024-11-01 17:20
【總結(jié)】WORD資料可編輯高三文科數(shù)學(xué)專題復(fù)習(xí)之圓錐曲線知識(shí)歸納:名稱橢圓雙曲線圖象定義平面內(nèi)到兩定點(diǎn)的距離的和為常數(shù)(大于)的動(dòng)點(diǎn)的軌跡叫橢圓即當(dāng)2﹥2時(shí),軌跡
2025-04-17 13:10
【總結(jié)】2012高考真題分類匯編:圓錐曲線一、選擇題1.【2012高考真題浙江理8】如圖,F(xiàn)1,F2分別是雙曲線C:(a,b>0)的左、右焦點(diǎn),B是虛軸的端點(diǎn),直線F1B與C的兩條漸近線分別交于P,Q兩點(diǎn),線段PQ的垂直平分線與x軸交與點(diǎn)M,若|MF2|=|F1F2|,則C的離心率是A.B。C.D.【答案】B【解析】由題意知
2025-04-07 04:35
【總結(jié)】各地圓錐曲線試題匯編各地圓錐曲線試題匯編橢圓1.若橢圓長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)之比為2,它的一個(gè)焦點(diǎn)是,求此橢圓的標(biāo)準(zhǔn)方程;
2025-08-04 14:57
【總結(jié)】高考圓錐曲線壓軸題型總結(jié)直線與圓錐曲線相交,一般采取設(shè)而不求,利用韋達(dá)定理,在這里我將這個(gè)問(wèn)題分成了三種類型,其中第一種類型的變式比較多。而方程思想,函數(shù)思想在這里也用得多,兩種思想可以提供簡(jiǎn)單的思路,簡(jiǎn)單的說(shuō)就是只需考慮未知數(shù)個(gè)數(shù)和條件個(gè)數(shù),。使用韋達(dá)定理時(shí)需注意成立的條件。題型一:條件和結(jié)論可以直接或經(jīng)過(guò)轉(zhuǎn)化后可用兩根之和與兩根之積來(lái)處理1.
2024-10-10 10:10
【總結(jié)】第1頁(yè)共35頁(yè)普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問(wèn)題一.課標(biāo)要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問(wèn)題常化為等式解決,要加強(qiáng)等價(jià)轉(zhuǎn)化思想的訓(xùn)練;2.通過(guò)圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合的思想;3.了解圓錐曲線
2025-07-28 15:29
【總結(jié)】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識(shí):1、求曲線(或直線)方程的思考方向大體有兩種,一個(gè)方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長(zhǎng),半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個(gè)方向是
2025-07-25 00:15
【總結(jié)】......學(xué)習(xí)參考 橢 圓典例精析題型一 求橢圓的標(biāo)準(zhǔn)方程【例1】已知點(diǎn)P在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為和453,過(guò)P
2025-04-17 13:13
【總結(jié)】2012高考試題分類匯編:8:圓錐曲線一、選擇題1.【2012高考新課標(biāo)文4】設(shè)是橢圓的左、右焦點(diǎn),為直線上一點(diǎn),是底角為的等腰三角形,則的離心率為() 【答案】C【解析】因?yàn)槭堑捉菫榈牡妊切?,則有,,因?yàn)?,所?,所以,即,所以,即,所以橢圓的離心率為,選C.2.【2012高考新課標(biāo)文10】等軸
2025-08-08 22:14
【總結(jié)】-1-2020高考試題分類匯編:8:圓錐曲線一、選擇題1.【2020高考新課標(biāo)文4】設(shè)12FF是橢圓22:1(0)xyEabab????的左、右焦點(diǎn),P為直線32ax?上一點(diǎn),12PFF?是底角為30的等腰三角形,則E的離心率為()()A12()B2
2024-11-03 07:20
【總結(jié)】......橢圓與雙曲線的性質(zhì)橢圓1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端點(diǎn).3
2025-04-17 13:06
【總結(jié)】直線與圓錐曲線綜合問(wèn)題一.考點(diǎn)分析。⑴直線與圓錐曲線的位置關(guān)系和判定直線與圓錐曲線的位置關(guān)系有三種情況:相交、相切、相離.直線方程是二元一次方程,圓錐曲線方程是二元二次方程,由它們組成的方程組,經(jīng)過(guò)消元得到一個(gè)一元二次方程,直線和圓錐曲線相交、相切、相離的充分必要條件分別是0??、0??、0??.⑵直線與圓錐曲線相交所得的弦長(zhǎng)
2025-01-09 16:02
【總結(jié)】高考數(shù)學(xué)圓錐曲線知識(shí)點(diǎn)總結(jié)方程的曲線:在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點(diǎn)的集合或軌跡)上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn),那么這個(gè)方程叫做曲線的方程;這條曲線叫做方程的曲線。點(diǎn)與曲線的關(guān)系:若曲線C的方程是f(x,y)=0,則點(diǎn)P0(x0,y0)在
【總結(jié)】WORD資料可編輯橢圓與雙曲線的性質(zhì)橢圓1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端點(diǎn).3.以焦點(diǎn)弦PQ為直徑的圓必與對(duì)應(yīng)準(zhǔn)線相
【總結(jié)】學(xué)科:數(shù)學(xué)復(fù)習(xí)內(nèi)容:圓錐曲線【知能目標(biāo)】,橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),雙曲線的標(biāo)準(zhǔn)方程,雙曲線的幾何性質(zhì),等軸雙曲線與共軛雙曲線的定義,拋物線的標(biāo)準(zhǔn)方程,拋物線的幾何性質(zhì);【綜合脈絡(luò)】【知識(shí)歸納】一、橢圓1.定義(1)第一定義:若F1,F(xiàn)2是兩定點(diǎn),P為動(dòng)點(diǎn),且(為常數(shù))則P點(diǎn)的軌跡是橢圓。(2)第二定
2025-01-14 04:02