【總結(jié)】西南科技大學(xué)理學(xué)院1第五講全微分方程與積分因子三、積分因子法一、全微分方程與原函數(shù)二、全微分方程判定定理與不定積分法四、小結(jié)西南科技大學(xué)理學(xué)院2定義:即(,)(,)(,)duxyMxydxNxydy??(
2024-10-16 21:13
【總結(jié)】數(shù)學(xué)與計(jì)算科學(xué)學(xué)院實(shí)驗(yàn)報(bào)告實(shí)驗(yàn)項(xiàng)目名稱Eular方法求解一階常微分方程數(shù)值解所屬課程名稱偏微分方程數(shù)值解實(shí)驗(yàn)類型驗(yàn)證性實(shí)驗(yàn)日期20
2024-08-02 00:27
【總結(jié)】第三章微分方程模型一、微分方程知識(shí)簡(jiǎn)介我們要掌握常微分方程的一些基礎(chǔ)知識(shí),對(duì)一些可以求解的微分方程及其方程組,要求掌握其解法,并了解一些方程的近似解法。微分方程的體系:(1)初等積分法(一階方程及幾類可降階為一階的方程)(2)一階線性微分方程組(常系數(shù)線性微分方程組的解法)(3)高階線性微分方程(高階線性常系數(shù)微分方程解法)。其中還包括了常微分方程的基本定理。
2025-06-24 22:55
【總結(jié)】第8章偏微分方程數(shù)值解一、典型的偏微分方程介紹1.橢圓型方程:在研究有熱源穩(wěn)定狀態(tài)下的熱傳導(dǎo),有固定外力作用下薄膜的平衡問題時(shí),都會(huì)遇到Poisson方程Dyxyxfyuxu???????),(),(222202222??????yuxu
2024-08-14 11:00
【總結(jié)】微分方程數(shù)值解課程設(shè)計(jì)姓名*****學(xué)號(hào)200******專業(yè)信息與計(jì)算科學(xué)課設(shè)題目:對(duì)初邊值問題2222xutu?????(0x1)0||10??
2025-01-12 04:03
2025-06-06 05:22
【總結(jié)】微分方程建模Ⅱ動(dòng)態(tài)模型正規(guī)戰(zhàn)與游擊戰(zhàn)?早在第一次世界大戰(zhàn)期間就提出了幾個(gè)預(yù)測(cè)戰(zhàn)爭(zhēng)結(jié)局的數(shù)學(xué)模型,其中有描述傳統(tǒng)的正規(guī)戰(zhàn)爭(zhēng)的,也有考慮游擊戰(zhàn)爭(zhēng)的,以及雙方分別使用正規(guī)部隊(duì)和游擊部隊(duì)的所謂混合戰(zhàn)爭(zhēng)的。后來人們對(duì)這些模型作了改進(jìn)用以分析歷史上一些著名的戰(zhàn)爭(zhēng),如二戰(zhàn)中的硫磺島之戰(zhàn)和越南戰(zhàn)爭(zhēng)。預(yù)測(cè)戰(zhàn)爭(zhēng)勝負(fù)應(yīng)該考慮哪些因素?;
2024-08-25 00:58
【總結(jié)】第五節(jié)可降階的高階微分方程)()(xfyn?解法:??2)2(dCxyn??????xd??依次通過n次積分,可得含n個(gè)任意常數(shù)的通解.21CxC??型的微分方程一、例1.解:??12dcose
2025-04-21 03:56
【總結(jié)】一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第一節(jié)微分方程的基本概念例1一曲線通過點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線斜率為x2,求這曲線的方程.解),(xyy?設(shè)所求曲線為d2dyxx?2dyxx??積分,得2,
2024-08-30 12:40
【總結(jié)】機(jī)動(dòng)目錄上頁下頁返回結(jié)束?第十節(jié)歐拉方程歐拉方程)(1)1(11)(xfypyxpyxpyxnnnnnn?????????)(為常數(shù)kp,tex?令常系數(shù)線性微分方程xtln?即第十二章歐拉方程的算子解法:)(1)1(11)(xfypyxpyxpyxnn
2024-08-14 06:25
【總結(jié)】Thursday,May26,20221第二章系統(tǒng)的數(shù)學(xué)模型Thursday,May26,20222本章的主要內(nèi)容控制系統(tǒng)微分方程建立傳遞函數(shù)控制系統(tǒng)的框圖和傳遞函數(shù)控制系統(tǒng)的信號(hào)流圖Thursday,May26,20223概述
2025-04-29 00:54
【總結(jié)】主要內(nèi)容典型例題第十章微分方程與差分方程習(xí)題課基本概念一階方程類型4.線性方程可降階方程線性方程解的結(jié)構(gòu)相關(guān)定理二階常系數(shù)線性方程解的結(jié)構(gòu)特征方程的根及其對(duì)應(yīng)項(xiàng)f(x)的形式及其特解形式高階方程待
2024-08-20 16:42
【總結(jié)】演示課件之三微分方程解的性態(tài)演示實(shí)驗(yàn)一、Lorenz微分方程模型實(shí)驗(yàn)?zāi)康淖寣W(xué)生觀察常微分方程組解的某些特征,從而揭示其中的數(shù)學(xué)規(guī)律和奧妙!著名的Lorenz微分方程模型:假定參數(shù)分別取值為:β=8/3,σ=10,ρ=28
2024-10-04 14:58
【總結(jié)】1常微分方程OrdinaryDifferentialEquations(5)高階常系數(shù)線性微分方程惺恰突訣粹能片扛瞬雒境畝誹率衙荇栽爸檢磷觖錦梅呆布嵋笑賤縶腹鏈雜查再芪濘兄罰裂篷莨盈逞窘胡恭鈀胗蹲躅擔(dān)溽擁絳伊渙蛩鐵麝瑭攥絨匆尾渾呃踺遲窖斗七缽畔諱戌脧挪饑飼硪阿璧趕懂稻夫財(cái)奪惟瘧枇仵孛罌體絞滋廩僅2§4.高階線性微分方程(
2024-10-19 18:02
【總結(jié)】引言回顧?靜力學(xué)研究物體在力系作用下的平衡規(guī)律及力系的簡(jiǎn)化;?運(yùn)動(dòng)學(xué)從幾何觀點(diǎn)研究物體的運(yùn)動(dòng),而不涉及物體所受的力;?動(dòng)力學(xué)研究物體的機(jī)械運(yùn)動(dòng)與作用力之間的關(guān)系。動(dòng)力學(xué)就是從因果關(guān)系上論述物體的機(jī)械運(yùn)動(dòng)。是理論力學(xué)中最具普遍意義的部分,靜力學(xué)、運(yùn)動(dòng)學(xué)則是動(dòng)力學(xué)的特殊情況。低速、宏觀物體的機(jī)械運(yùn)動(dòng)的普遍規(guī)律。
2025-06-16 14:51