【總結】圓錐曲線:第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當常數(shù)等于時,軌跡是線段FF,當常數(shù)小于時,無軌跡;雙曲線中,與兩定點F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點的兩
2025-08-08 15:44
【總結】圓錐曲線與方程一、選擇題1.雙曲線3x2-y2=9的實軸長是( )A.2B.2C.4D.42.以-=-1的焦點為頂點,頂點為焦點的橢圓方程為( )A.+=1B.+=1
2025-04-04 05:07
【總結】第一篇:人教版高中數(shù)學《圓錐曲線和方程》全部教案 人教版高中數(shù)學全部教案 橢圓及其標準方程 一、教學目標(一)知識教學點 使學生理解橢圓的定義,掌握橢圓的標準方程的推導及標準方程.(二)能力訓...
2025-11-07 05:14
【總結】WORD資料可編輯高中數(shù)學圓錐曲線基本知識與典型例題第一部分:橢圓1.橢圓的概念在平面內(nèi)與兩定點F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓.這兩個定點叫做橢圓的焦點,兩焦點間的距離叫做橢圓的焦距.集合P={M||MF1|+|
【總結】圓錐曲線方程知識要點一、橢圓方程及其性質(zhì).1.橢圓的第一定義:橢圓的第二定義:,點P到定點F的距離,d為點P到直線l的距離其中F為橢圓焦點,l為橢圓準線①橢圓的標準方程:的參數(shù)方程為()(現(xiàn)在了解,后面選修4-4要詳細講).②通徑:垂直于對稱軸且過焦點的弦叫做通徑,橢圓通徑長為③設橢圓:上弦AB的中點為M(x0,y0),則斜率kAB=,對橢圓:,則kAB=.弦
【總結】高中數(shù)學圓錐曲線基本知識與典型例題第一部分:橢圓1.橢圓的概念在平面內(nèi)與兩定點F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓.這兩個定點叫做橢圓的焦點,兩焦點間的距離叫做橢圓的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a0,c0,且a,c為常數(shù):(1)若ac,則集合P為橢圓;(2)
【總結】§圓錐曲線教學目標,經(jīng)歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義,并能用數(shù)學符號或自然語言的描述。2.通過用平面截圓錐面,感受、了解雙曲線的定義。能用數(shù)學符號或自然語言描述雙曲線的定義。教學重點、難點重點:橢圓、拋物線、雙曲線的定義。難點:用數(shù)學符號或自然語言描述三種曲線的定義[教
2024-12-08 21:22
【總結】圓錐曲線教學過程設計1.問題情境我們知道,用一個平面截一個圓錐面,當平面經(jīng)過圓錐面的頂點時,可得到兩條相交直線,當平面與圓錐面的軸垂直時,截得的圖形是一個圓,試改變平面的位置,觀察截得的圖形的變化情況。提出問題:用平面去截圓錐面能得到哪些曲線?2.學生活動學生討論上述問題,通過觀察,可以得到以下三種不同的曲線:
【總結】圓錐曲線與方程§MQF2PO1O2VF1古希臘數(shù)學家Dandelin在圓錐截面的兩側分別放置一球,使它們都與截面相切(切點分別為F1,F(xiàn)2),又分別與圓錐面的側面相切(兩球與側面的公共點分別構成圓O1和圓O2).過M點作圓錐面的一條母線分別交圓O1,圓O2與
2025-11-08 23:31
【總結】圓錐曲線的統(tǒng)一定義江蘇省運河中學高二備課組2、雙曲線的定義:平面內(nèi)到兩定點F1、F2距離之差的絕對值等于常數(shù)2a(2a|F1F2|)的點的軌跡表達式||PF1|-|PF2||=2a(2a|F1F2|)3、拋物線的定義:平面內(nèi)到定點F的距離和到定直線的距離相等的點的軌跡表達式|PF|=
2025-11-08 23:32
【總結】圓錐曲線 圓錐曲線第第一二定定義義標準方程的關系橢圓性質(zhì)對稱性焦點頂點離心率準線焦半徑直線與橢圓的位置關系相交相切相離第第一二定定義義標準方程的關系雙曲線性質(zhì)對稱性焦點頂點離心率準線焦半徑直線與雙曲線的位置關系相交相切相離漸近線
2025-06-07 23:21
【總結】學案52 直線與圓錐曲線位置關系導學目標:.自主梳理1.直線與橢圓的位置關系的判定方法(1)將直線方程與橢圓方程聯(lián)立,消去一個未知數(shù),得到一個一元二次方程,若Δ0,則直線與橢圓________;若Δ=0,則直線與橢圓________;若Δ0,則直線與橢圓________.(2)直線與雙曲線的位置關系的判定方法將直線方程與雙曲線方程聯(lián)立消去y(
2025-04-17 12:25
【總結】江蘇省響水中學高中數(shù)學第2章《圓錐曲線與方程》圓錐曲線(1)導學案蘇教版選修1-1學習目標:,發(fā)現(xiàn)圓錐曲線的形成過程,進而歸納出它們的定義,培養(yǎng)觀察、辨析、歸納問題的能力..,感受數(shù)形結合的基本思想和理解代數(shù)方法研究幾何性質(zhì)的優(yōu)越性.重點難點:
2025-11-10 17:31
【總結】2022屆高考數(shù)學復習強化雙基系列課件77《圓錐曲線-軌跡方程》基本知識概要:一、求軌跡的一般方法:1.直接法:如果動點運動的條件就是一些幾何量的等量關系,這些條件簡單明確,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法。用直接法求動點軌跡一般有建系,設點,列式,化簡,證明五個步驟,最后的證明可以省
2025-07-24 10:09
【總結】軌跡方程經(jīng)典例題一、軌跡為圓的例題:1、必修2課本P124B組2:長為2a的線段的兩個端點在軸和軸上移動,求線段AB的中點M的軌跡方程:必修2課本P124B組:已知M與兩個定點(0,0),A(3,0)的距離之比為,求點M的軌跡方程;(一般地:必修2課本P144B組2:已知點M(,)與兩個定點的距離之比為一個常數(shù);討論點M(,)的軌跡方程(分=1,與1進行討論)
2025-03-25 00:04