【總結(jié)】空間向量在立體幾何中的應用5前段時間我們研究了用空間向量求角(包括線線角、線面角和面面角)、求距離(包括線線距離、點面距離、線面距離和面面距離)今天我來研究如何利用空間向量來解決立體幾何中的有關證明及計算問題。一、空間向量的運算及其坐標運算的掌握二、立體
2025-01-08 14:05
【總結(jié)】空間向量與立體幾何典型例題一、選擇題:1.(2022全國Ⅰ卷理)已知三棱柱111ABCABC?的側(cè)棱與底面邊長都相等,1A在底面ABC內(nèi)的射影為ABC△的中心,則1AB與底面ABC所成角的正弦值等于(C)A.13B.23C.33D.23:C.由題意知三棱錐1AABC?為正四
2025-01-09 10:12
【總結(jié)】第三章空間向量與立體幾何單元測試(時間:90分鐘 滿分:120分)第Ⅰ卷(選擇題,共50分)一、選擇題:本大題共10小題,每小題5分,共50分.1.以下四組向量中,互相平行的組數(shù)為( )①a=(2,2,1),b=(3,-2,-2);②a=(8,4,-6),b=(4,2,-3);③a=(0,-1,1),b=(0,3,-3);④a=(-3,2,0),b=(4,-3,3)
2025-06-23 18:25
【總結(jié)】空間向量與立體幾何單元測試題一、選擇題1、若,,是空間任意三個向量,,下列關系式中,不成立的是()A.B.C.D.2、給出下列命題①已知,則;②A、B、M、N為空間四點,若不構(gòu)成空間的一個基底,則A、B、M、N共面;③已知,則與任何向量不構(gòu)成空間的一個基底;④已知是空
2025-03-25 06:42
【總結(jié)】空間向量與立體幾何單元檢測題一、選擇題:1、若,,是空間任意三個向量,,下列關系式中,不成立的是()A、B、C、D、2、已知向量=(1,1,0),則與共線的單位向量() A、(1,1,0) B、(0,1,0) C、(,,0)D、(1,1,1)3、若為任意
2025-01-15 05:33
【總結(jié)】歡迎光臨《中學數(shù)學信息網(wǎng)》《中學數(shù)學信息網(wǎng)》系列資料版權(quán)所有@《中學數(shù)學信息網(wǎng)》ABCDEFGHIJ2020屆高三數(shù)學第一輪復習單元測試(8)—《立體幾何》一、選擇題(本大題共12
2024-08-22 11:56
【總結(jié)】空間向量之應用3利用空間向量求距離課本P42如果表示向量a的有向線段所在直線垂直于平面?,則稱這個向量垂直于平面?,記作a⊥?.如果a⊥?,那么向量a叫做平面?的法向量.?la課本P33已知向量ABa?和軸l,e是l上與l同方向的單位向量.作
2025-01-08 13:41
【總結(jié)】2122020高考數(shù)學一輪復習單元練習--圓錐曲線與方程I卷一、選擇題1.下列命題中假命題是()A.離心率為2的雙曲線的兩漸近線互相垂直B.過點(1,1)且與直線x-2y+3=0垂直的直線方程是2x+y-3=0C.拋物線y2=2x的焦點到準線的距離為1D.2
2024-08-19 20:10
【總結(jié)】第四課文化的繼承性與文化發(fā)展課標要求解析中華民族傳統(tǒng)文化在現(xiàn)實生活中的作用,闡述繼承傳統(tǒng)文化要“取其精華,去其糟粕”的道理。◆討論:如何看待傳統(tǒng)習俗的價值。◆從古籍文獻中摘錄一些至今仍被頻繁引用的傳統(tǒng)道德格言,討論繼承和發(fā)揚中華傳統(tǒng)美德在今天的作用。◆設計展板:我國一些建筑、藝術(shù)、服飾等風格和形式的變遷,體現(xiàn)著傳統(tǒng)與現(xiàn)代結(jié)合之美?;居^點1、
2025-05-11 22:03
【總結(jié)】高考數(shù)學《立體幾何》第一輪復習平面的基本性質(zhì)一、高考要求:理解平面的基本性質(zhì).二、知識要點::平面是無限延展的,,平面一般用希臘字母α、β、γ、…來命名,還可以用表示平行四邊形的對角頂點的字母來命名.:(1)如果一條直線上的兩點在一個平面內(nèi),,:如果A∈a,B∈a,且
2025-06-07 22:30
【總結(jié)】利用空間向量解立體幾何問題2、例2已知三角形的頂點是,,,試求這個三角形的面積。分析:可用公式來求面積解:∵,,∴,,,∴,∴所以,.1、綜述(1)由于任意兩個空間向量都可以轉(zhuǎn)化為平面向量,所以空間兩個向量的夾角的定義和取值范圍、兩個向量垂直的定義和符號、兩個空間向量的數(shù)量積等等,都與平面向量相同。(2)利用空間向量解題的方法有2類:(i)利
2025-06-07 16:39
【總結(jié)】WORD格式整理1.如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求證:M為PB的中點;(2)求二面角B﹣PD﹣A的大??;(3)求直線MC與平面BDP所成角的正弦值.【
2024-08-01 04:50
【總結(jié)】利用空間向量解決立體幾何問題一:利用空間向量求空間角(1)兩條異面直線所成的夾角范圍:兩條異面直線所成的夾角的取值范圍是。向量求法:設直線的方向向量為,其夾角為,則有1.在正三棱柱ABC-A1B1C1,若AB=BB1,則AB1與C1B所成角的大小( )A.60° B.90°C.105°
2025-06-07 16:29
【總結(jié)】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時,可用定量的計算代替定性的分析,從而回避了一些嚴謹?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標系,解立體幾何題1122330???abab
2024-11-09 01:53
【總結(jié)】 回扣5 立體幾何與空間向量 1.柱、錐、臺、球體的表面積和體積 側(cè)面展開圖 表面積 體積 直棱柱 長方形 S=2S底+S側(cè) V=S底·h 圓柱 長方形 S=2πr2+...
2025-04-03 03:46