【總結(jié)】空間向量與立體幾何單元測試題一、選擇題1、若,,是空間任意三個向量,,下列關(guān)系式中,不成立的是()A.B.C.D.2、給出下列命題①已知,則;②A、B、M、N為空間四點,若不構(gòu)成空間的一個基底,則A、B、M、N共面;③已知,則與任何向量不構(gòu)成空間的一個基底;④已知是空
2025-03-25 06:42
【總結(jié)】空間向量與立體幾何單元檢測題一、選擇題:1、若,,是空間任意三個向量,,下列關(guān)系式中,不成立的是()A、B、C、D、2、已知向量=(1,1,0),則與共線的單位向量() A、(1,1,0) B、(0,1,0) C、(,,0)D、(1,1,1)3、若為任意
2025-01-15 05:33
【總結(jié)】高中數(shù)學(xué)選修(2-1)空間向量與立體幾何測試題一、選擇題1.若把空間平行于同一平面且長度相等的所有非零向量的始點放置在同一點,則這些向量的終點構(gòu)成的圖形是( ?。粒粋€圓 B.一個點 C.半圓 D.平行四邊形答案:A2.在長方體中,下列關(guān)于的表達中錯誤的一個是( ?。粒? B.C. D.答案:B3.若為任意向量,,下列等式不一
2025-06-23 03:41
【總結(jié)】空間向量在立體幾何中的應(yīng)用5前段時間我們研究了用空間向量求角(包括線線角、線面角和面面角)、求距離(包括線線距離、點面距離、線面距離和面面距離)今天我來研究如何利用空間向量來解決立體幾何中的有關(guān)證明及計算問題。一、空間向量的運算及其坐標(biāo)運算的掌握二、立體
2025-01-08 14:05
【總結(jié)】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時,可用定量的計算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標(biāo)系,解立體幾何題1122330???abab
2024-11-09 01:53
【總結(jié)】立體幾何中的向量方法—求空間角?立體幾何這一考點在廣東高考試卷中占有很大比例,11年19分12年18分13年24分。這些題目也是我們?nèi)幦×η鬂M分的題目。主要考查三視圖問題,點線面位置關(guān)系問題,還有就是大題.大題主要有垂直、平行、角度、體積。對于角度問題,一直是一個難點。大體有兩種求法,一類是傳統(tǒng)方法,一做(找)二證三求,另一種方
2025-06-16 12:13
【總結(jié)】利用空間向量解決立體幾何問題數(shù)學(xué)專題二學(xué)習(xí)提綱二、立體幾何問題的類型及解法1、判斷直線、平面間的位置關(guān)系;(1)直線與直線的位置關(guān)系;(2)直線與平面的位置關(guān)系;(3)平面與平面的位置關(guān)系;2、求解空間中的角度;3、求解空間中的距離。1、直線的方向向量;2、平面的法向量。
2024-11-25 22:52
【總結(jié)】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時,可用定量的計算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角的問題。數(shù)量積:夾角公式:異面直線所成角的范圍:思考:結(jié)論:題型
2024-11-11 02:54
【總結(jié)】空間向量與立體幾何典型例題一、選擇題:1.(2022全國Ⅰ卷理)已知三棱柱111ABCABC?的側(cè)棱與底面邊長都相等,1A在底面ABC內(nèi)的射影為ABC△的中心,則1AB與底面ABC所成角的正弦值等于(C)A.13B.23C.33D.23:C.由題意知三棱錐1AABC?為正四
2025-01-09 10:12
【總結(jié)】立體幾何中的向量方法1.(2012年高考(重慶理))設(shè)四面體的六條棱的長分別為1,1,1,1,和,且長為的棱與長為的棱異面,則的取值范圍是 ( ?。〢. B. C. D.[解析]以O(shè)為原點,分別以O(shè)B、OC、OA所在直線為x、y、z軸,則,A,2.(2012年高考(陜西理))如圖,在空間直角坐標(biāo)系中有直三棱柱,,則直線與直線夾角的余弦值為 ( )A.
2025-04-17 13:06
【總結(jié)】空間向量坐標(biāo)法---解決立體幾何問題一.建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,能求點的坐標(biāo);1、三條直線交于一點且兩兩垂直;方便求出各點的坐標(biāo)。2、如何求出點的坐標(biāo):先求線段的長度(特別是軸上線段):由已知條件可全部求出來;若不能,則可先設(shè)出來。(1)軸上的點--------X軸--(a,0,0),y軸--(0,b,0),z軸--(0,0,c)(2)三個坐標(biāo)面上的點-
【總結(jié)】WORD格式整理1.如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求證:M為PB的中點;(2)求二面角B﹣PD﹣A的大?。唬?)求直線MC與平面BDP所成角的正弦值.【
2025-07-23 04:50
【總結(jié)】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個模相等且方向相同的向量稱為相等的向量.4.負(fù)向量:兩個模相等且方向相反的向量是互為負(fù)向量.如的相反向量記為-.
2025-04-17 08:18
【總結(jié)】《空間向量在立體幾何中的應(yīng)用》教學(xué)設(shè)計(一)知識與技能、線面角、二面角的余弦值;.(二)過程與方法、線面角、二面角的余弦值的過程;.(三)情感態(tài)度與價值觀、線面角、二面角的余弦值,用空間向量解決平行與垂直問題的過程,讓學(xué)生體會幾何問題代數(shù)化,領(lǐng)悟解析幾何的思想;;、運用知識的能力.、難點重點:用空間向量求線線角、線面角、二面角的余弦值及解決平行
2025-04-17 08:11
【總結(jié)】空間向量與立體幾何知識點歸納總結(jié)一.知識要點。1.空間向量的概念:在空間,我們把具有大小和方向的量叫做向量。注:(1)向量一般用有向線段表示同向等長的有向線段表示同一或相等的向量。(2)向量具有平移不變性2.空間向量的運算。定義:與平面向量運算一樣,空間向量的加法、減法與數(shù)乘運算如下(如圖)。;;運算律:⑴加法交換律:⑵加法結(jié)合
2025-06-23 03:52