【總結】 兩角和與差的正弦、余弦和正切公式 兩角差的余弦公式 學習目標 核心素養(yǎng) .(重點) .(難點) .(重點、易混點) ,培養(yǎng)學生的邏輯推理素養(yǎng). 、求值,提升學生的數(shù)學運...
2025-04-03 04:10
【總結】1.設函數(shù)。(1)當a=1時,求的單調區(qū)間。(2)若在上的最大值為,求a的值。解:對函數(shù)求導得:,定義域為(0,2)當a=1時,令當為增區(qū)間;當為減函數(shù)。當有最大值,則必不為減函數(shù),且0,為單調遞增區(qū)間。最大值在右端點取到。。2.已知函數(shù)其中實數(shù)。(I)若a=2,求曲線在點處的切線方程;(II)若在x=1處取得極值,試討論的單調
2025-03-24 07:03
【總結】【成才之路】2021-2021學年高中數(shù)學第1章第1課時利用導數(shù)判斷函數(shù)的單調性課時作業(yè)新人教B版選修2-2一、選擇題1.函數(shù)f(x)=(x-3)ex的單調增區(qū)間是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)[答案]D[解析]f′(x)
2024-12-03 11:28
【總結】Email:lihongqing999@:570206??谑泻P愦蟮?9號海南華僑中學李紅慶工作室函數(shù)的單調性與最值漫談海南華僑中學黃玲玲函數(shù)的單調性與最值是中學數(shù)學的核心內容.從中學數(shù)學知識的網絡來看,函數(shù)的單調性與最值在中學數(shù)學中起著“紐帶”的作用,她承前于函數(shù)的值域、方程有解的條件、不等式證明,啟后于數(shù)列的最值問題、導數(shù)的應用等知識.例如:求函數(shù)的值域,令,則,,則函
2025-05-16 01:34
【總結】導數(shù)及其應用第一章導數(shù)的應用第1課時利用導數(shù)判斷函數(shù)的單調性第一章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習研究股票時,我們最關心的是股票的發(fā)展趨勢(走高或走低)以及股票價格的變化范圍(封頂或保底).從股票走勢曲線圖來看,股票有升有降.在數(shù)學上,函數(shù)曲線也有升有降,就是
2024-11-17 20:10
【總結】第三章導數(shù)及其應用第8課時函數(shù)的單調性教學目標:;.教學重點:利用導數(shù)判斷函數(shù)單調性教學難點:利用導數(shù)判斷函數(shù)單調性教學過程:Ⅰ.問題情境Ⅱ.建構數(shù)學::Ⅲ.數(shù)學應用例1:確定函數(shù)f(x)=x2-2x+4
2024-11-19 17:30
【總結】......函數(shù)的單調性與最值復習:按照列表、描點、連線等步驟畫出函數(shù)的圖像.圖像在軸的右側部分是上升的,當在區(qū)間[0,+)上取值時,隨著的增大,相應的值也隨著增大,如果取∈[0,+),得到,,那么當<
2025-05-16 01:56
【總結】第三節(jié)函數(shù)的單調性與最值基礎梳理:在函數(shù)y=f(x)的定義域內的一個區(qū)間A上,如果對于任意兩個數(shù)x1,x2A,當x1x2時,都有________________,那么就說f(x)在_______上是增加的(減少的).注意:(1)函數(shù)的單調性是在________內
2024-11-12 01:26
【總結】【成才之路】2021年春高中數(shù)學第2章解三角形1正弦定理與余弦定理第2課時余弦定理同步練習北師大版必修5一、選擇題1.(2021·煙臺高二檢測)在△ABC中,角A,B,C所對的邊分別為a,b,c,且a2=b2-c2+2ac,則角B的大小是()A.45°
2024-12-05 06:40
【總結】正弦函數(shù)、余弦函數(shù)的性質(一)【學習要求】1.了解周期函數(shù)、周期、最小正周期的定義.2.會求函數(shù)y=Asin(ωx+φ)及y=Acos(ωx+φ)的周期.3.掌握函數(shù)y=sinx,y=cosx的奇偶性,會判斷簡單三角函數(shù)的奇偶性.【學法指導】1.在函數(shù)的周期定義中是對定義域中的每一個x值來說,對于個別的
2024-11-19 23:26
【總結】正弦、余弦函數(shù)的性質X(奇偶性、單調性)正弦、余弦函數(shù)的圖象x6?yo-?-12?3?4?5?-2?-3?-4?1?y=sinx(x?R)x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cosx(x?R)
2024-11-10 03:01
【總結】第一篇:高一數(shù)學《函數(shù)的單調性與最值》第二課時教案 函數(shù)的單調性與最值 學習目標: ,它是函數(shù)單調性的應用。。 。知識重現(xiàn) 1、一般地,設函數(shù)f(x)的定義域為I,如果存在實數(shù)M滿足:(1)...
2024-11-04 12:50
【總結】 (教師獨具) 第四課 三角恒等變換 [鞏固層·知識整合] [提升層·題型探究] 三角函數(shù)式求值 【例1】 (1)已知sin=-,則cos=( ) A.- B...
2025-04-03 04:02
【總結】導數(shù)與函數(shù)的單調性、極值、最值適用學科高中數(shù)學適用年級高中三年級適用區(qū)域通用課時時長(分鐘)60知識點函數(shù)的單調性函數(shù)的極值函數(shù)的最值教學目標掌握函數(shù)的單調性求法,會求函數(shù)的函數(shù)的極值,會求解最值問題,教學重點會利用導數(shù)求解函數(shù)的單調性,會求解函數(shù)的最值。教學難點熟練掌握函數(shù)的單調性、極值、最值的求法,以及分類討論思想的應用
2025-07-26 05:39
【總結】陜西省榆林育才中學高中數(shù)學第1章《三角函數(shù)》4任意角的正弦函數(shù)、余弦函數(shù)的定義導學案北師大版必修4【學習目標】1.利用單位圓認識和理解正弦函數(shù)、余弦函數(shù)的概念,并能根據(jù)定義判定正弦函數(shù)、余弦函數(shù)的符號.2.利用單位圓研究正弦函數(shù)、余弦函數(shù)的周期性.3.通過借助單位圓討論正弦函數(shù)、余弦函數(shù)的過程,進一步加深對數(shù)形結合思想
2024-11-19 23:19