freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx-20xx備戰(zhàn)中考數(shù)學與二次函數(shù)有關的壓軸題(編輯修改稿)

2025-03-30 22:25 本頁面
 

【文章內容簡介】 為該拋物線的“衍生三角形”,∴N在y軸上,且AD=2,在Rt△AND中,由勾股定理可得DN=,∵OD=,∴ON=或ON=,∴N點的坐標為(0,),(0,);(3)①當AC為平行四邊形的邊時,如圖2 ,過F作對稱軸的垂線FH,過A作AK⊥x軸于點K,則有AC∥EF且AC=EF,∴∠ ACK=∠ EFH,在△ ACK和△ EFH中∴△ ACK≌△ EFH,∴FH=CK=1,HE=AK=,∵拋物線的對稱軸為x=1,∴ F點的橫坐標為0或2,∵點F在直線AB上,∴當F點的橫坐標為0時,則F(0,),此時點E在直線AB下方,∴E到y(tǒng)軸的距離為EHOF==,即E的縱坐標為,∴ E(1,);當F點的橫坐標為2時,則F與A重合,不合題意,舍去;②當AC為平行四邊形的對角線時,∵ C(3,0),且A(2,),∴線段AC的中點坐標為(, ),設E(1,t),F(xiàn)(x,y),則x1=2(),y+t=,∴x= 4,y=t,t=(4)+,解得t=,∴E(1,),F(xiàn)(4,);綜上可知存在滿足條件的點F,此時E(1,)、(0,)或E(1,),F(xiàn)(4,)【點睛】本題是對二次函數(shù)的綜合知識考查,熟練掌握二次函數(shù),幾何圖形及輔助線方法是解決本題的關鍵,屬于壓軸題6.如圖,已知頂點為的拋物線與軸交于,兩點,直線過頂點和點.(1)求的值;(2)求函數(shù)的解析式;(3)拋物線上是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由.【答案】(1)﹣3;(2)yx2﹣3;(3)M的坐標為(3,6)或(,﹣2).【解析】【分析】(1)把C(0,﹣3)代入直線y=x+m中解答即可;(2)把y=0代入直線解析式得出點B的坐標,再利用待定系數(shù)法確定函數(shù)關系式即可;(3)分M在BC上方和下方兩種情況進行解答即可.【詳解】(1)將C(0,﹣3)代入y=x+m,可得:m=﹣3;(2)將y=0代入y=x﹣3得:x=3,所以點B的坐標為(3,0),將(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函數(shù)的解析式為:yx2﹣3;(3)存在,分以下兩種情況:①若M在B上方,設MC交x軸于點D,則∠ODC=45176。+15176。=60176。,∴OD=OC?tan30176。,設DC為y=kx﹣3,代入(,0),可得:k,聯(lián)立兩個方程可得:,解得:,所以M1(3,6);②若M在B下方,設MC交x軸于點E,則∠OEC=45176。15176。=30176。,∴OE=OC?tan60176。=3,設EC為y=kx﹣3,代入(3,0)可得:k,聯(lián)立兩個方程可得:,解得:,所以M2(,﹣2).綜上所述M的坐標為(3,6)或(,﹣2).【點睛】此題是一道二次函數(shù)綜合題,熟練掌握待定系數(shù)法求函數(shù)解析式等知識是解題關鍵.7.如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0).(1)求點B的坐標;(2)已知,C為拋物線與y軸的交點.①若點P在拋物線上,且,求點P的坐標;②設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.【答案】(1)點B的坐標為(1,0).(2)①點P的坐標為(4,21)或(-4,5).②線段QD長度的最大值為.【解析】【分析】(1)由拋物線的對稱性直接得點B的坐標.(2)①用待定系數(shù)法求出拋物線的解析式,從而可得點C的坐標,得到,設出點P 的坐標,根據(jù)列式求解即可求得點P的坐標.②用待定系數(shù)法求出直線AC的解析式,由點Q在線段AC上,可設點Q的坐標為(q,q3),從而由QD⊥x軸交拋物線于點D,得點D的坐標為(q,q2+2q3),從而線段QD等于兩點縱坐標之差,列出函數(shù)關系式應用二次函數(shù)最值原理求解.【詳解】解:(1)∵A、B兩點關于對稱軸對稱 ,且A點的坐標為(-3,0),∴點B的坐標為(1,0).(2)①∵拋物線,對稱軸為,經過點A(-3,0),∴,解得.∴拋物線的解析式為.∴B點的坐標為(0,-3).∴OB=1,OC=3.∴.設點P的坐標為(p,p2+2p3),則.∵,∴,解得.當時;當時,∴點P的坐標為(4,21)或(-4,5).②設直線AC的解析式為,將點A,C的坐標代入,得:,解得:.∴直線AC的解析式為.∵點Q在線段AC上,∴設點Q的坐標為(q,q3).又∵QD⊥x軸交拋物線于點D,∴點D的坐標為(q,q2+2q3).∴.∵,∴線段QD長度的最大值為.8.如圖,已知拋物線經過A(-3,0),B(1,0),C(0,3)三點,其頂點為D,對稱軸是直線l,l與x軸交于點H.(1)求該拋物線的解析式;(2)若點P是該拋物線對稱軸l上的一個動點,求△PBC周長的最小值;(3)如圖(2),若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設點E的橫坐標為m,△ADF的面積為S.①求S與m的函數(shù)關系式;②S是否存在最大值?若存在,求出最大值及此時點E的坐標; 若不存在,請說明理由.【答案】(1).(2).(3)①.②當m=﹣2時,S最大,最大值為1,此時點E的坐標為(﹣2,2).【解析】【分析】(1)根據(jù)函數(shù)圖象經過的三點,用待定系數(shù)法確定二次函數(shù)的解析式即可.(2)根據(jù)BC是定值,得到當PB+PC最小時,△PBC的周長最小,根據(jù)點的坐標求得相應線段的長即可.(3)設點E的橫坐標為m,表示出E(m,2m+6),F(xiàn)(m,),最后表示出EF的長,從而表示出S于m的函數(shù)關系,然后求二次函數(shù)的最值即可.【詳解】解:(1)∵拋物線經過A(-3,0),B(1,0),∴可設拋物線交點式為.又∵拋物線經過C(0,3),∴.∴拋物線的解析式為:,即.(2)∵△PBC的周長為:PB+PC+BC,且BC是定值.∴當PB+PC最小時,△PBC的周長最小.∵點A、點B關于對稱軸I對稱,∴連接AC交l于點P,即點P為所求的點.∵AP=BP,∴△PBC的周長最小是:PB+PC+BC=AC+BC.∵A(-3,0),B(1,0),C(0,3),∴AC=3,BC=.∴△PBC的周長最小是:.(3)①∵拋物線頂點D的坐標為(﹣1,4),A(﹣3,0),∴直線AD的解析式為y=2x+6∵點E的橫坐標為m,∴E(m,2m+6),F(xiàn)(m,)∴.∴.∴S與m的函數(shù)關系式為.②,∴當m=﹣2時,S最大,最大值為1,此時點E的坐標為(﹣2,2).9.如圖,在平面直角坐標系中,拋物線y=ax2+2ax﹣3a(a<0)與x軸相交于A,B兩點,與y軸相交于點C,頂點為D,直線DC與x軸相交于點E.(1)當a=﹣1時,求拋物線頂點D的坐標,OE等于多少;(2)OE的長是否與a值有關,說明你的理由;(3)設∠DE
點擊復制文檔內容
合同協(xié)議相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1