freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)與二次函數(shù)有關(guān)的壓軸題附詳細答案(編輯修改稿)

2025-03-30 22:20 本頁面
 

【文章內(nèi)容簡介】 為斜邊,在直線DE的左下方作等腰直角三角形PDE.設(shè)P(m,n),直接寫出n關(guān)于m的函數(shù)解析式及自變量m的取值范圍.【答案】(1)(﹣1,4),3;(2)結(jié)論:OE的長與a值無關(guān).理由見解析;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).【解析】【分析】(1)求出直線CD的解析式即可解決問題;(2)利用參數(shù)a,求出直線CD的解析式求出點E坐標即可判斷;(3)求出落在特殊情形下的a的值即可判斷;(4)如圖,作PM⊥對稱軸于M,PN⊥AB于N.兩條全等三角形的性質(zhì)即可解決問題.【詳解】解:(1)當(dāng)a=﹣1時,拋物線的解析式為y=﹣x2﹣2x+3,∴頂點D(﹣1,4),C(0,3),∴直線CD的解析式為y=﹣x+3,∴E(3,0),∴OE=3,(2)結(jié)論:OE的長與a值無關(guān).理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直線CD的解析式為y=ax﹣3a,當(dāng)y=0時,x=3,∴E(3,0),∴OE=3,∴OE的長與a值無關(guān).(3)當(dāng)β=45176。時,OC=OE=3,∴﹣3a=3,∴a=﹣1,當(dāng)β=60176。時,在Rt△OCE中,OC=OE=3,∴﹣3a=3,∴a=﹣,∴45176?!堞隆?0176。,a的取值范圍為﹣≤a≤﹣1.(4)如圖,作PM⊥對稱軸于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90176。,∠DPE=∠MPN=90176。,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,PM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,當(dāng)頂點D在x軸上時,P(1,﹣2),此時m的值1,∵拋物線的頂點在第二象限,∴m<1.∴n=﹣m﹣1(m<1).故答案為:(1)(﹣1,4),3;(2)OE的長與a值無關(guān);(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).【點睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)的圖象與性質(zhì)。8.如圖,某足球運動員站在點O處練習(xí)射門,(點A在y軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,.(1)足球飛行的時間是多少時,足球離地面最高?最大高度是多少?(2)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系x=10t,如果該運動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?【答案】(1)足球飛行的時間是s時,足球離地面最高,;(2)能.【解析】試題分析:(1)由題意得:函數(shù)y=at2+5t+c的圖象經(jīng)過(0,)(,),于是得到,求得拋物線的解析式為:y=﹣t2+5t+,當(dāng)t=時,y最大=;(2)把x=28代入x=10t得t=,當(dāng)t=,y=﹣+5+=<,于是得到他能將球直接射入球門.解:(1)由題意得:函數(shù)y=at2+5t+c的圖象經(jīng)過(0,)(,),∴,解得:,∴拋物線的解析式為:y=﹣t2+5t+,∴當(dāng)t=時,y最大=;(2)把x=28代入x=10t得t=,∴當(dāng)t=,y=﹣+5+=<,∴他能將球直接射入球門.考點:二次函數(shù)的應(yīng)用.9.如圖①,拋物線與x軸交于A、B兩點(點A位于點B的左側(cè)),與y軸交于點C,已知的面積為6.(1)求的值;(2)求外接圓圓心的坐標;(3)如圖②,P是拋物線上一點,點Q為射線CA上一點,且P、Q兩點均在第三象限內(nèi),Q、A是位于直線BP同側(cè)的不同兩點,若點P到x軸的距離為d,的面積為,且,求點Q的坐標.【答案】(1)3;(2)坐標(1,1);(3)Q.【解析】【分析】(1)利用拋物線解析式得到A、B、C三點坐標,然后利用三角形面積公式列出方程解出a;(2)利用第一問得到A、B、C三點坐標,求出AC解析式,找到AC垂直平分線的解析式,與AB垂直平分線解析式聯(lián)立,解出x、y即為圓心坐標;(3)過點P做PD⊥x軸,PD=d,發(fā)現(xiàn)△ABP與△QBP的面積相等,得到A、D兩點到PB得距離相等,可得,求出PB解析式,與二次函數(shù)解析式聯(lián)立得到P點坐標,又易證,得到BQ=AP=,設(shè)出Q點坐標,點與點的距離列出方程,解出Q點坐標即可【詳解】(1)解:由題意得由圖知: 所以A(),,=6∴ (2)由(1)得A(),,∴直線AC得解析式為:AC中點坐標為∴AC的垂直平分線為:又∵AB的垂直平分線為: ∴ 得 外接圓圓心的坐標(1,1).(3)解:過點P做PD⊥x軸由題意得:PD=d,∴ =2d∵的面積為∴,即A、D兩點到PB得距離相等∴設(shè)PB直線解析式為。過點 ∴∴易得 所以P(4,5),由題意及易得:∴BQ=AP=設(shè)Q(m,1)()∴∴Q.【點睛】本題考查二次函數(shù)綜合性問題,涉及到一次函數(shù)、三角形外接圓圓心、全等三角形等知識點,第一問關(guān)鍵在于用a表示出A、B、C三點坐標;第二問關(guān)鍵在于找到AC垂直平分線的解析式,與AB垂直平分線解析式;第三問關(guān)鍵在于能夠求出PB的解析式10.如圖,拋物線y=ax2+6x+c交x軸于A,B兩點,交y軸于點C.直線y=x﹣5經(jīng)過點B,C.(1)求拋物線的解析式;(2)過點A的直線交直線BC于點M.①當(dāng)AM⊥BC時,過拋物線上一動點P(不與點B,C重合),作直線AM的平行線交直線BC于點Q,若以點A,M,P,Q為頂點的四邊形是平行四邊形,求點P的橫坐標;②連接AC,當(dāng)直線AM與直線BC的夾角等于∠ACB的2倍時,請直接寫出點M的坐標.【答案】(1)拋物線解析式為y=﹣x2+6x﹣5;(2)①P點的橫坐標為4或或;②點M的坐標為(,﹣)或(,﹣).【解析】分析:(1)利用一次函數(shù)解析式確定C(0,5),B(5,0),然后利用待定系數(shù)法求拋物線解析式;(2)①先解方程x2+6x5=0得A(1,0),再判斷△OCB為等腰直角三角形得到∠OBC=∠OCB=45176。,則△AMB為等腰直角三角形,所以AM=2,接著根據(jù)平行四邊形的性質(zhì)得到PQ=AM=2,PQ⊥BC,作PD⊥x軸交直線BC于D,如圖1,利用∠PDQ=45176。得到PD=PQ=4,設(shè)P(m,m2+6m5),則D(m,m5),討論:當(dāng)P點在直線BC上方時,PD=m2+6m5(m5)=4;當(dāng)P點在直線BC下方時,PD=m5(m2+6m5),然后分別解方程即可得到P點的橫坐標;②作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于M1,交AC于E,如圖2,利用等腰三角形的性質(zhì)和三角形外角性質(zhì)得到∠AM1B=2∠ACB,再確定N(3,2),AC的解析式為y=5x5,E點坐標為(,),利用兩直線垂直的問題可設(shè)直線EM1的解析式為y=x+b,把E(,)代入求出b得到直線EM1的解析式為y=x,則解方程組得M1點的坐標;作直線BC上作點M1關(guān)于N點的對稱點M2,如圖2,利用對稱性得到∠AM2C=∠AM1B=2∠ACB,設(shè)M2(x,x5),根據(jù)中點坐標公式得到3=,然后求出x即可得到M2的坐標,從而得到滿足條件的點M的坐標.詳解:(1)當(dāng)x=0時,y=x﹣5=﹣5,則C(0,﹣5),當(dāng)y=0時,x﹣5=0,解得x=5,則B(5,0),把B(5,0),C(0,﹣5)代入y=
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1