freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)備考之二次函數(shù)壓軸突破訓(xùn)練∶培優(yōu)易錯(cuò)試卷篇附詳細(xì)答案(編輯修改稿)

2025-03-31 07:20 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 H=BH,BP,進(jìn)而得到OP,即得到P點(diǎn)坐標(biāo),③當(dāng)PN=PB時(shí),取NB中點(diǎn)K,作KP⊥BN,交x軸于點(diǎn)P,易得△NOB∽△PKB,利用比例式求出PB,進(jìn)而得到OP,即求出P點(diǎn)坐標(biāo)【詳解】解:(1)將A(﹣1,0)、B(3,0)代入y=ax2+bx+4,得 解得a=,b=,∴拋物線的解析式;(2)∴拋物線對(duì)稱軸為直線x=1,∴D的橫坐標(biāo)為1,由(1)可得C(0,4),∵B(3,0),∴直線BC:∵DA=DB,△DAC的周長(zhǎng)=AC+CD+AD=AC+CD+BD,連接BC,與對(duì)稱軸交于點(diǎn)D,此時(shí)CD+BD最小,∵AC為定值,∴此時(shí)△DAC的周長(zhǎng),當(dāng)x=1時(shí),y=﹣1+4=,∴D(1,);(3)作EH∥AB交BC于H,則∠FAB=∠FEH,∠FBA=∠FHE,∴△ABF∽△EHF,∵AF:FE=2:1,∴,∵AB=4,∴EH=2,設(shè)E(x,),則H(x﹣2,)∵EH∥AB,∴yE=y(tǒng)H,∴=解得x=1或x=2,y=或4,∴E(1,)或(2,4);(4)∵A(﹣1,0)、B(3,0),C(0,4)∴AB=4,OC=4,點(diǎn)M運(yùn)動(dòng)到點(diǎn)A時(shí),BM=AB=4,∴BN=4,∵△PBN是等腰三角形,①BP=BC時(shí),若P在點(diǎn)B左側(cè),OP=PB﹣OB=4﹣3=1,∴P1(﹣1,0),若P在點(diǎn)B右側(cè),OP=OB+BP=4+3=7,∴P2(7,0);②當(dāng)NB=NP時(shí),作NH⊥x軸,△NHB∽△COB,∴∴NH=OC==, BH=BC=,∴PH=BH=,BP=,∴OP=BP﹣OB=,∴P3(﹣,0);③當(dāng)PN=PB時(shí),取NB中點(diǎn)K,作KP⊥BN,交x軸于點(diǎn)P,∴△NOB∽△PKB,∴∴PB=,∴OP=OB﹣PB=3﹣=P4(,0)綜上,當(dāng)△PBN是等腰三角形時(shí),點(diǎn)P的坐標(biāo)P1(﹣1,0)或P2(7,0)或P3(﹣,0)或P4(,0).【點(diǎn)睛】本題考查二次函數(shù)、平行線性質(zhì)、相似三角形、等腰三角形性質(zhì)及最短距離等知識(shí)點(diǎn),綜合程度比較高,對(duì)綜合能力要求比較高. 第一問(wèn)比較簡(jiǎn)單,考查待定系數(shù)法;第二問(wèn)最短距離,找到D點(diǎn)是解題關(guān)鍵;第三問(wèn)證明出相似是關(guān)鍵;第四問(wèn)能夠分情況討論是解題關(guān)鍵9.若三個(gè)非零實(shí)數(shù)x,y,z滿足:只要其中一個(gè)數(shù)的倒數(shù)等于另外兩個(gè)數(shù)的倒數(shù)的和,則稱這三個(gè)實(shí)數(shù)x,y,z構(gòu)成“和諧三組數(shù)”.(1)實(shí)數(shù)1,2,3可以構(gòu)成“和諧三組數(shù)”嗎?請(qǐng)說(shuō)明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三點(diǎn)均在函數(shù)y=(k為常數(shù),k≠0)的圖象上,且這三點(diǎn)的縱坐標(biāo)y1,y2,y3構(gòu)成“和諧三組數(shù)”,求實(shí)數(shù)t的值;(3)若直線y=2bx+2c(bc≠0)與x軸交于點(diǎn)A(x1,0),與拋物線y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)兩點(diǎn).①求證:A,B,C三點(diǎn)的橫坐標(biāo)x1,x2,x3構(gòu)成“和諧三組數(shù)”;②若a>2b>3c,x2=1,求點(diǎn)P(,)與原點(diǎn)O的距離OP的取值范圍.【答案】(1)不能,理由見(jiàn)解析;(2)t的值為﹣﹣2或2;(3)①證明見(jiàn)解析;②≤OP<且OP≠1.【解析】【分析】(1)由和諧三組數(shù)的定義進(jìn)行驗(yàn)證即可;(2)把M、N、R三點(diǎn)的坐標(biāo)分別代入反比例函數(shù)解析式,可用t和k分別表示出yyy3,再由和諧三組數(shù)的定義可得到關(guān)于t的方程,可求得t的值;(3)①由直線解析式可求得x1=﹣,聯(lián)立直線和拋物線解析式消去y,利用一元二次方程根與系數(shù)的關(guān)系可求得x2+x3=﹣,x2x3=,再利用和諧三數(shù)組的定義證明即可;②由條件可得到a+b+c=0,可得c=﹣(a+b),由a>2b>3c可求得的取值范圍,令m=,利用兩點(diǎn)間距離公式可得到OP2關(guān)于m的二次函數(shù),利用二次函數(shù)的性質(zhì)可求得OP2的取值范圍,從而可求得OP的取值范圍.【詳解】(1)不能,理由如下:∵3的倒數(shù)分別為∴+≠1,1+≠,1+≠,∴實(shí)數(shù)1,2,3不可以構(gòu)成“和諧三組數(shù)”;(2)∵M(jìn)(t,y1),N(t+1,y2),R(t+3,y3)三點(diǎn)均在函數(shù)(k為常數(shù),k≠0)的圖象上,∴yyy3均不為0,且y1=,y2=,y3=,∴=,=,=,∵y1,y2,y3構(gòu)成“和諧三組數(shù)”,∴有以下三種情況:當(dāng)=+時(shí),則=+,即t=t+1+t+3,解得t=﹣4;當(dāng)=+時(shí),則=+,即t+1=t+t+3,解得t=﹣2;當(dāng)=+時(shí),則=+,即t+3=t+t+1,解得t=2;∴t的值為﹣﹣2或2;(3)①∵a、b、c均不為0,∴x1,x2,x3都不為0,∵直線y=2bx+2c(bc≠0)與x軸交于點(diǎn)A(x1,0),∴0=2bx1+2c,解得x1=﹣,聯(lián)立直線與拋物線解析式,消去y可得2bx+2c=ax2+3bx+3c,即ax2+bx+c=0,∵直線與拋物線交與B(x2,y2),C(x3,y3)兩點(diǎn),∴xx3是方程ax2+bx+c=0的兩根,∴x2+x3=﹣,x2x3=,∴+===﹣=,∴x1,x2,x3構(gòu)成“和諧三組數(shù)”;②∵x2=1,∴a+b+c=0,∴c=﹣a﹣b,∵a>2b>3c,∴a>2b>3(﹣a﹣b),且a>0,整理可得,解得﹣<<,∵P(,),∴OP2=()2+()2=()2+()2=2()2+2+1=2(+)2+,令m=,則﹣<m<且m≠0,且OP2=2(m+)2+,∵2>0,∴當(dāng)﹣<m<﹣時(shí),OP2隨m的增大而減小,當(dāng)m=﹣時(shí),OP2有最大臨界值,當(dāng)m=﹣時(shí),OP2有最小臨界值,當(dāng)﹣<m<時(shí),OP2隨m的增大而增大,當(dāng)m=﹣時(shí),OP2有最小臨界值,當(dāng)m=時(shí),OP2有最大臨界值,∴≤OP2且OP2≠1,∵P到原點(diǎn)的距離為非負(fù)數(shù),∴≤OP<且OP≠1.【點(diǎn)睛】本題為二次函數(shù)的綜合應(yīng)用,涉及新定義、函數(shù)圖象的交點(diǎn)、一元二次方程根與系數(shù)的關(guān)系、勾股定理、二次函數(shù)的性質(zhì)、分類討論思想及轉(zhuǎn)化思想等知識(shí).在(1)中注意利用和諧三數(shù)組的定義,在(2)中由和諧三數(shù)組得到關(guān)于t的方程是解題的關(guān)鍵,在(3)①中用a、b、c分別表示出x1,x2,x3是解題的關(guān)鍵,在(3)②中把OP2表示成二次函數(shù)的形式是解題的關(guān)鍵.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),特別是最后一問(wèn),難度很大.10.如圖,已知拋物線的圖象與x軸的一個(gè)交點(diǎn)為B(5,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,5)。(1)求直線BC與拋物線的解析式;(2)若點(diǎn)M是拋物線在x軸下方圖象上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求MN的最大值;(3)在(2)的條件下,MN取得最大值時(shí),若點(diǎn)P是拋物線在x軸下方圖象上任意一點(diǎn),以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點(diǎn)P的坐標(biāo)?!敬鸢浮浚?)(2)(3)P的坐標(biāo)為(-1,12)或(6,5)或(2,-3)或(3,-4)【解析】【分析】(1)由B(5,0),C(0,5),應(yīng)用待定系數(shù)法即可求直線BC與拋物線的解析式。(2)構(gòu)造MN關(guān)于點(diǎn)M橫坐標(biāo)的函數(shù)關(guān)系式,應(yīng)用二次函數(shù)最值原理求解。(3)根據(jù)S1=6S2求得BC與PQ的距離h,從而求得PQ由BC平移的距離,根據(jù)平移的性質(zhì)求得PQ的解析式,與拋物線聯(lián)立,即可求得點(diǎn)P的坐標(biāo)。【詳解】解:(1)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1