freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)與二次函數(shù)有關(guān)的壓軸題(已改無(wú)錯(cuò)字)

2025-03-30 22 本頁(yè)面
  

【正文】 O=β,45176?!堞隆?0176。,求a的取值范圍;(4)以DE為斜邊,在直線DE的左下方作等腰直角三角形PDE.設(shè)P(m,n),直接寫出n關(guān)于m的函數(shù)解析式及自變量m的取值范圍.【答案】(1)(﹣1,4),3;(2)結(jié)論:OE的長(zhǎng)與a值無(wú)關(guān).理由見(jiàn)解析;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).【解析】【分析】(1)求出直線CD的解析式即可解決問(wèn)題;(2)利用參數(shù)a,求出直線CD的解析式求出點(diǎn)E坐標(biāo)即可判斷;(3)求出落在特殊情形下的a的值即可判斷;(4)如圖,作PM⊥對(duì)稱軸于M,PN⊥AB于N.兩條全等三角形的性質(zhì)即可解決問(wèn)題.【詳解】解:(1)當(dāng)a=﹣1時(shí),拋物線的解析式為y=﹣x2﹣2x+3,∴頂點(diǎn)D(﹣1,4),C(0,3),∴直線CD的解析式為y=﹣x+3,∴E(3,0),∴OE=3,(2)結(jié)論:OE的長(zhǎng)與a值無(wú)關(guān).理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直線CD的解析式為y=ax﹣3a,當(dāng)y=0時(shí),x=3,∴E(3,0),∴OE=3,∴OE的長(zhǎng)與a值無(wú)關(guān).(3)當(dāng)β=45176。時(shí),OC=OE=3,∴﹣3a=3,∴a=﹣1,當(dāng)β=60176。時(shí),在Rt△OCE中,OC=OE=3,∴﹣3a=3,∴a=﹣,∴45176?!堞隆?0176。,a的取值范圍為﹣≤a≤﹣1.(4)如圖,作PM⊥對(duì)稱軸于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90176。,∠DPE=∠MPN=90176。,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,PM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,當(dāng)頂點(diǎn)D在x軸上時(shí),P(1,﹣2),此時(shí)m的值1,∵拋物線的頂點(diǎn)在第二象限,∴m<1.∴n=﹣m﹣1(m<1).故答案為:(1)(﹣1,4),3;(2)OE的長(zhǎng)與a值無(wú)關(guān);(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).【點(diǎn)睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)的圖象與性質(zhì)。10.如圖,某足球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)射門,(點(diǎn)A在y軸上),足球的飛行高度y(單位:m)與飛行時(shí)間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,.(1)足球飛行的時(shí)間是多少時(shí),足球離地面最高?最大高度是多少?(2)若足球飛行的水平距離x(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系x=10t,如果該運(yùn)動(dòng)員正對(duì)球門射門時(shí),離球門的水平距離為28m,他能否將球直接射入球門?【答案】(1)足球飛行的時(shí)間是s時(shí),足球離地面最高,;(2)能.【解析】試題分析:(1)由題意得:函數(shù)y=at2+5t+c的圖象經(jīng)過(guò)(0,)(,),于是得到,求得拋物線的解析式為:y=﹣t2+5t+,當(dāng)t=時(shí),y最大=;(2)把x=28代入x=10t得t=,當(dāng)t=,y=﹣+5+=<,于是得到他能將球直接射入球門.解:(1)由題意得:函數(shù)y=at2+5t+c的圖象經(jīng)過(guò)(0,)(,),∴,解得:,∴拋物線的解析式為:y=﹣t2+5t+,∴當(dāng)t=時(shí),y最大=;(2)把x=28代入x=10t得t=,∴當(dāng)t=,y=﹣+5+=<,∴他能將球直接射入球門.考點(diǎn):二次函數(shù)的應(yīng)用.11.如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸l為x=﹣1.(1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);(2)若動(dòng)點(diǎn)P在第二象限內(nèi)的拋物線上,動(dòng)點(diǎn)N在對(duì)稱軸l上.①當(dāng)PA⊥NA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);②當(dāng)四邊形PABC的面積最大時(shí),求四邊形PABC面積的最大值及此時(shí)點(diǎn)P的坐標(biāo).【答案】(1)y=﹣(x+1)2+4,頂點(diǎn)坐標(biāo)為(﹣1,4);(2)①點(diǎn)P(﹣﹣1,2);②P(﹣ ,)【解析】試題分析:(1)將B、C的坐標(biāo)代入已知的拋物線的解析式,由對(duì)稱軸為即可得到拋物線的解析式;(2)①首先求得拋物線與x軸的交點(diǎn)坐標(biāo),然后根據(jù)已知條件得到PD=OA,從而得到方程求得x的值即可求得點(diǎn)P的坐標(biāo);②,表示出來(lái)得到二次函數(shù),求得最值即可.試題解析:(1)∵拋物線與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸l為,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點(diǎn)坐標(biāo)為(﹣1,4);(2)令,解得或,∴點(diǎn)A(﹣3,0),B(1,0),作PD⊥x軸于點(diǎn)D,∵點(diǎn)P在上,∴設(shè)點(diǎn)P(x,),①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即,解得x=(舍去)或x=,∴點(diǎn)P(,2);②設(shè)P(x,y),則,∵=OB?OC+AD?PD+(PD+OC)?OD=====,∴當(dāng)x=時(shí),=,當(dāng)x=時(shí),=,此時(shí)P(,).考點(diǎn):1.二次函數(shù)綜合題;2.二次函數(shù)的最值;3.最值問(wèn)題;4.壓軸題.12.已知,如圖,拋物線的頂點(diǎn)為,經(jīng)過(guò)拋物線上的兩點(diǎn)和的直線交拋物線的對(duì)稱軸于點(diǎn).(1)求拋物線的解析式和直線的解析式.(2)在拋物線上兩點(diǎn)之間的部分(不包含兩點(diǎn)),是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3)若點(diǎn)在拋物線上,點(diǎn)在軸上,當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫出滿足條件的點(diǎn)的坐標(biāo).【答案】(1)拋物線的表達(dá)式為:,直線的表達(dá)式為:;(2)存在,理由見(jiàn)解析;點(diǎn)或或或.【解析】【分析】(1)二次函數(shù)表達(dá)式為:y=a(x1)2+9,即可求解;(2)S△DAC=2S△DCM,則,即可求解;(3)分AM是平行四邊形的一條邊、AM是平行四邊形的對(duì)角線兩種情況,分別求解即可.【詳解】解:(1)二次函數(shù)表達(dá)式為:,將點(diǎn)的坐標(biāo)代入上式并解得:,故拋物線的表達(dá)式為:…①,則點(diǎn),將點(diǎn)的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:直線的表達(dá)式為:;(2)存在,理由:二次函數(shù)對(duì)稱軸為:,則點(diǎn),過(guò)點(diǎn)作軸的平行線交于點(diǎn),設(shè)點(diǎn),點(diǎn),∵,則,解得:或5(舍去5),故點(diǎn);(3)設(shè)點(diǎn)、點(diǎn),①當(dāng)是平行四邊形的一條邊時(shí),點(diǎn)向左平移4個(gè)單位向下平移16個(gè)單位得到,同理,點(diǎn)向左平移4個(gè)單位向下平移16個(gè)單位為,即為點(diǎn),即:,而,解得:或﹣4,故點(diǎn)或;②當(dāng)是平行四邊形的對(duì)角線時(shí),由中點(diǎn)公式得:,而,解得:,故點(diǎn)或;綜上,點(diǎn)或或或.【點(diǎn)睛】本題考查的是二次函數(shù)綜合運(yùn)用,涉及到一次函數(shù)、平行四邊形性質(zhì)、圖形的面積計(jì)算等,其中(3),要注意分類求解,避免遺漏.13.如圖,已知二次函數(shù)y=ax2+bx+3 的圖象與x軸分別交于A(1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(1)求此二次函數(shù)解析式;(2)點(diǎn)D為拋物線的頂點(diǎn),試判斷△BCD的形狀,并說(shuō)明理由;(3)將直線BC向上平移t(t0)個(gè)單位,平移后的直線與拋物線交于M,N兩點(diǎn)(點(diǎn)M在y軸的右側(cè)),當(dāng)△AMN為直角三角形時(shí),求t的值.【答案】(1);(2)△BCD為直角三角形,理由見(jiàn)解析;(3)當(dāng)△AMN為直角三角形時(shí),t的值為1或4.【解析】【分析】(
點(diǎn)擊復(fù)制文檔內(nèi)容
合同協(xié)議相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1