freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

全國備戰(zhàn)中考數(shù)學(xué)二次函數(shù)的綜合備戰(zhàn)中考真題匯總含答案(已改無錯(cuò)字)

2025-03-31 22 本頁面
  

【正文】 由.【答案】(1),頂點(diǎn)為:;(2)的值為﹣3;(3)存在,點(diǎn)的橫坐標(biāo)為:或.【解析】【分析】(1)運(yùn)用待定系數(shù)法將、代入中,即可求得和的值和拋物線解析式,再利用配方法將拋物線解析式化為頂點(diǎn)式即可求得頂點(diǎn)的坐標(biāo);(2)根據(jù)拋物線繞點(diǎn)旋轉(zhuǎn),可求得新拋物線的解析式,再將代入中,即可求得直線解析式,根據(jù)對稱性可得點(diǎn)坐標(biāo),過點(diǎn)作軸交直線于,過作軸交直線于,由,即可得,再證明∽,即可得,建立方程求解即可;(3)連接,易證是,可得,在軸下方過點(diǎn)作,在上截取,過點(diǎn)作軸于,連接交拋物線于點(diǎn),點(diǎn)即為所求的點(diǎn);通過建立方程組求解即可.【詳解】(1)將、代入中,得解得∴拋物線解析式為:,配方,得:,∴頂點(diǎn)為:;(2)∵拋物線繞點(diǎn)旋轉(zhuǎn),得到新的拋物線.∴新拋物線的頂點(diǎn)為:,二次項(xiàng)系數(shù)為:∴新拋物線的解析式為:將代入中,得,解得,∴直線解析式為,∵,∴直線的解析式為,由拋物線與拋物線關(guān)于原點(diǎn)對稱,可得點(diǎn)、V關(guān)于原點(diǎn)對稱,∴如圖2,過點(diǎn)作軸交直線于,過作軸交直線于,則,∴,∵∴,∵軸,軸∴∴∽∴,即∴解得:,∵∴的值為:﹣3;(3)由(2)知:,∴,,如圖3,連接,在中,∵,∴∴是直角三角形,∴,∵∴,在軸下方過點(diǎn)作,在上截取,過點(diǎn)作軸于,連接交拋物線于點(diǎn),點(diǎn)即為所求的點(diǎn);∵,∴∵∴∴,設(shè)直線解析式為,則,解得∴直線解析式為,解方程組,得,∴點(diǎn)的橫坐標(biāo)為:或.【點(diǎn)睛】本題考查了二次函數(shù)圖象和性質(zhì),待定系數(shù)法求函數(shù)解析式,旋轉(zhuǎn)變換,相似三角形判定和性質(zhì),直線與拋物線交點(diǎn),解直角三角形等知識點(diǎn);屬于中考壓軸題型,綜合性強(qiáng),難度較大.10.如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1過A、B兩點(diǎn),并與過A點(diǎn)的直線y=﹣x﹣1交于點(diǎn)C.(1)求拋物線解析式及對稱軸;(2)在拋物線的對稱軸上是否存在一點(diǎn)P,使四邊形ACPO的周長最???若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由;(3)點(diǎn)M為y軸右側(cè)拋物線上一點(diǎn),過點(diǎn)M作直線AC的垂線,垂足為N.問:是否存在這樣的點(diǎn)N,使以點(diǎn)M、N、C為頂點(diǎn)的三角形與△AOC相似,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請說明理由.【答案】(1)拋物線解析式為:y=,拋物線對稱軸為直線x=1;(2)存在P點(diǎn)坐標(biāo)為(1,﹣);(3)N點(diǎn)坐標(biāo)為(4,﹣3)或(2,﹣1)【解析】分析:(1)由待定系數(shù)法求解即可;(2)將四邊形周長最小轉(zhuǎn)化為PC+PO最小即可;(3)利用相似三角形對應(yīng)點(diǎn)進(jìn)行分類討論,構(gòu)造圖形.設(shè)出點(diǎn)N坐標(biāo),表示點(diǎn)M坐標(biāo)代入拋物線解析式即可.詳解:(1)把A(2,0),B(4,0)代入拋物線y=ax2+bx1,得 解得 ∴拋物線解析式為:y=x2?x?1∴拋物線對稱軸為直線x==1(2)存在使四邊形ACPO的周長最小,只需PC+PO最小∴取點(diǎn)C(0,1)關(guān)于直線x=1的對稱點(diǎn)C′(2,1),連C′O與直線x=1的交點(diǎn)即為P點(diǎn).設(shè)過點(diǎn)C′、O直線解析式為:y=kx∴k=∴y=x則P點(diǎn)坐標(biāo)為(1,)(3)當(dāng)△AOC∽△MNC時(shí),如圖,延長MN交y軸于點(diǎn)D,過點(diǎn)N作NE⊥y軸于點(diǎn)E∵∠ACO=∠NCD,∠AOC=∠CND=90176?!唷螩DN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵M(jìn)N⊥AC∴M、D關(guān)于AN對稱,則N為DM中點(diǎn)設(shè)點(diǎn)N坐標(biāo)為(a,a1)由△EDN∽△OAC∴ED=2a∴點(diǎn)D坐標(biāo)為(0,a?1)∵N為DM中點(diǎn)∴點(diǎn)M坐標(biāo)為(2a,a?1)把M代入y=x2?x?1,解得a=4則N點(diǎn)坐標(biāo)為(4,3)當(dāng)△AOC∽△CNM時(shí),∠CAO=∠NCM∴CM∥AB則點(diǎn)C關(guān)于直線x=1的對稱點(diǎn)C′即為點(diǎn)N由(2)N(2,1)∴N點(diǎn)坐標(biāo)為(4,3)或(2,1)點(diǎn)睛:本題為代數(shù)幾何綜合題,考查了待定系數(shù)、兩點(diǎn)之間線段最短的數(shù)學(xué)模型構(gòu)造、三角形相似.解答時(shí),應(yīng)用了數(shù)形結(jié)合和分類討論的數(shù)學(xué)思想.11.如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對稱軸l為x=﹣1.(1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);(2)若動(dòng)點(diǎn)P在第二象限內(nèi)的拋物線上,動(dòng)點(diǎn)N在對稱軸l上.①當(dāng)PA⊥NA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);②當(dāng)四邊形PABC的面積最大時(shí),求四邊形PABC面積的最大值及此時(shí)點(diǎn)P的坐標(biāo).【答案】(1)y=﹣(x+1)2+4,頂點(diǎn)坐標(biāo)為(﹣1,4);(2)①點(diǎn)P(﹣﹣1,2);②P(﹣ ,)【解析】試題分析:(1)將B、C的坐標(biāo)代入已知的拋物線的解析式,由對稱軸為即可得到拋物線的解析式;(2)①首先求得拋物線與x軸的交點(diǎn)坐標(biāo),然后根據(jù)已知條件得到PD=OA,從而得到方程求得x的值即可求得點(diǎn)P的坐標(biāo);②,表示出來得到二次函數(shù),求得最值即可.試題解析:(1)∵拋物線與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對稱軸l為,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點(diǎn)坐標(biāo)為(﹣1,4);(2)令,解得或,∴點(diǎn)A(﹣3,0),B(1,0),作PD⊥x軸于點(diǎn)D,∵點(diǎn)P在上,∴設(shè)點(diǎn)P(x,),①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即,解得x=(舍去)或x=,∴點(diǎn)P(,2);②設(shè)P(x,y),則,∵=OB?OC+AD?PD+(PD+OC)?OD=====,∴當(dāng)x=時(shí),=,當(dāng)x=時(shí),=,此時(shí)P(,).考點(diǎn):1.二次函數(shù)綜合題;2.二次函數(shù)的最值;3.最值問題;4.壓軸題.12.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo)為,且,拋物線圖象經(jīng)過三點(diǎn).(1)求兩點(diǎn)的坐標(biāo);(2)求拋物線的解析式;(3)若點(diǎn)是直線下方的拋物線上的一個(gè)動(dòng)點(diǎn),作于點(diǎn),當(dāng)?shù)闹底畲髸r(shí),求此時(shí)點(diǎn)的坐標(biāo)及的最大值.【答案】解:(1)點(diǎn)A、C的坐標(biāo)分別為(4,0)、(0,﹣4);;(2)拋物線的表達(dá)式為: ;(3)PD有最大值,當(dāng)x=2時(shí),其最大值為,此時(shí)點(diǎn)P(2,﹣6).【解析】【分析】(1)OA=OC=4OB=4,即可求解;(2)拋物線的表達(dá)式為: ,即可求解;(3),即可求解.【詳解】解:(1)OA=OC=4OB=4,故點(diǎn)A、C的坐標(biāo)分別為(4,0)、(0,﹣4);(2)拋物線的表達(dá)式為:,即﹣4a=﹣4,解得:a=1,故拋物線的表達(dá)式為: ;(3)直線CA過點(diǎn)C,設(shè)其函數(shù)表達(dá)式為:,將點(diǎn)A坐標(biāo)代入上式并解得:k=1,故直線CA的表達(dá)式為:y=x﹣4,過點(diǎn)P作y軸的平行線交AC于點(diǎn)H,∵OA=OC=4, ,∵ ,設(shè)點(diǎn) ,則點(diǎn)H(x,x﹣4),∵ <0,∴PD有最大值,當(dāng)x=2時(shí),其最大值為,此時(shí)點(diǎn)P(2,﹣6).【點(diǎn)睛】本題考查的是二次函數(shù)綜合運(yùn)用,涉及到一次函數(shù)、解直角三角形、圖象的面積計(jì)算等,其中(3)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1