【總結(jié)】本節(jié)介紹幾種特殊的高階方程,它們的共同特點(diǎn)是經(jīng)過適當(dāng)?shù)淖兞看鷵Q可將其化成較低階的方程來(lái)求解。可降階的高階微分方程前面介紹了五種標(biāo)準(zhǔn)類型的一階方程及其求解方法,但是能用初等解法求解的方程為數(shù)腥當(dāng)有限,特別是高階方程,除去一些特殊情況可用降階法求解,一般都沒有初等解法,以二階方程
2025-05-14 21:59
【總結(jié)】可降階的高階微分方程1小結(jié)思考題作業(yè))()(xfyn?型的方程),(yxfy????型的方程),(yyfy????型的方程可降階的高階微分方程第5章微分方程應(yīng)用可降階的高階微分方程2)()(xfyn?一、
2025-04-29 05:40
【總結(jié)】主講:林亮?xí)r間:性質(zhì):選修對(duì)象:信科08-1、2微分方程數(shù)值解法差分格式的穩(wěn)定性和收斂性問題的提出我們先看一個(gè)數(shù)值例子,考慮初邊值問題??????????????????????????????
2025-01-04 22:48
【總結(jié)】第六章微分方程及其應(yīng)用常微分方程的基本概念與分離變量法一階線性微分方程二階常系數(shù)線性微分方程常微分在經(jīng)濟(jì)中應(yīng)用常微分方程的基本概念與分離變量法微分方程的基本概念1.微分方程含有未知函數(shù)的導(dǎo)數(shù)或微分的方程稱為微分方程。注:在微分方程中,如果未知
2024-11-03 21:15
【總結(jié)】偏微分方程基本概念?數(shù)學(xué)物理方程通常是指物理學(xué)、力學(xué)、工程技術(shù)和其他學(xué)科中出現(xiàn)的偏微分方程。?反映有關(guān)的未知變量關(guān)于時(shí)間的導(dǎo)數(shù)和關(guān)于空間變量的導(dǎo)數(shù)之間的制約關(guān)系。?連續(xù)介質(zhì)力學(xué)、電磁學(xué)、量子力學(xué)等等方面的基本方程都屬于數(shù)學(xué)物理方程的范圍?;靖拍?偏微分方程是指含有未知函數(shù)以及未知函數(shù)的某些偏導(dǎo)數(shù)的等式。
2025-03-21 22:00
【總結(jié)】目錄上頁(yè)下頁(yè)返回結(jié)束第五章線性微分方程組前面幾章研究了只含一個(gè)未知函數(shù)的一階或高階方程,但在許多實(shí)際的問題和一些理論問題中,往往要涉及到若干個(gè)未知函數(shù)以及它們導(dǎo)數(shù)的方程所組成的方程組,即微分方程組,本章將介紹一階微分方程組的一般解法,重點(diǎn)仍在線性方程組的基本理論和常系數(shù)線性方程的解法上.
2025-01-20 04:56
【總結(jié)】上一頁(yè)下一頁(yè)返回首頁(yè)湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院1第4章微分方程與差分方程上一頁(yè)下一頁(yè)返回首頁(yè)湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院2在科學(xué)技術(shù)和經(jīng)濟(jì)管理等許多實(shí)際問題中,系統(tǒng)中的變量間往往可以表示成一個(gè)(組)微分方程或差分方程,它們是兩類不同的方程,前者處理的量的離散變量,間隔時(shí)間周期作為統(tǒng)計(jì)的.動(dòng)態(tài)
2025-05-14 06:04
【總結(jié)】第八章微分方程與差分方程簡(jiǎn)介微分方程的基本概念可分離變量的一階微分方程一階線性微分方程可降階的高階微分方程二階常系數(shù)線性微分方程微分方程應(yīng)用實(shí)例退出第八章微分方程與差分方程簡(jiǎn)介我們知道,函數(shù)是研究客觀事物運(yùn)動(dòng)規(guī)律的重要工具,找出函數(shù)關(guān)
【總結(jié)】Runge-Kutta積分方法所以得到:是精確的,中的平均速度。設(shè)是動(dòng)點(diǎn)在其中為:,一般的解法可以表示對(duì)?????????????????????)(!3)(2)()()()(),(),().,(),(32111nnnnnnnnnnnnnnntYhtYhtYhtYhtYtYYttY
2025-05-05 18:22
【總結(jié)】§常系數(shù)線性微分方程的解法-對(duì)于一般的線性微分方程沒有普遍的解法基本點(diǎn)v常系數(shù)線性微分方程及可化為這一類型的方程的解法-只須解一個(gè)代數(shù)方程。v某些特殊的非齊次微分方程也可通過代數(shù)運(yùn)算和微分運(yùn)算求得它的通解。掌握:v特征方程與特征根,及求常系數(shù)線性方程的通解v待定系數(shù)法與拉普拉斯變換法求非齊次線性方程的特解
2025-04-29 01:03
【總結(jié)】二、二階線性方程的特征理論三、三類方程的比較一、二階線性方程的分類第四章二階線性偏微分方程的分類與總結(jié)第四章四、先驗(yàn)估計(jì)一、二階線性方程的分類111222122xxxyyyxyauauaububucuf??????1、兩個(gè)自變量的方程一
2025-02-21 15:22
【總結(jié)】二階線性微分方程)()()(22xfyxQdxdyxPdxyd???時(shí),當(dāng)0)(?xf二階線性齊次微分方程時(shí),當(dāng)0)(?xf二階線性非齊次微分方程n階線性微分方程).()()()(1)1(1)(xfyxPyxPyxPynnnn?????????第六節(jié)線性微分方程解的結(jié)構(gòu)])[(11?
2025-01-19 08:36
【總結(jié)】第五節(jié)可降階的高階微分方程)()(xfyn?解法:??2)2(dCxyn??????xd??依次通過n次積分,可得含n個(gè)任意常數(shù)的通解.21CxC??型的微分方程一、例1.解:??12dcose
2025-04-21 03:56
【總結(jié)】微分方程建模Ⅱ動(dòng)態(tài)模型正規(guī)戰(zhàn)與游擊戰(zhàn)?早在第一次世界大戰(zhàn)期間就提出了幾個(gè)預(yù)測(cè)戰(zhàn)爭(zhēng)結(jié)局的數(shù)學(xué)模型,其中有描述傳統(tǒng)的正規(guī)戰(zhàn)爭(zhēng)的,也有考慮游擊戰(zhàn)爭(zhēng)的,以及雙方分別使用正規(guī)部隊(duì)和游擊部隊(duì)的所謂混合戰(zhàn)爭(zhēng)的。后來(lái)人們對(duì)這些模型作了改進(jìn)用以分析歷史上一些著名的戰(zhàn)爭(zhēng),如二戰(zhàn)中的硫磺島之戰(zhàn)和越南戰(zhàn)爭(zhēng)。預(yù)測(cè)戰(zhàn)爭(zhēng)勝負(fù)應(yīng)該考慮哪些因素?;
2025-08-16 00:58
【總結(jié)】西南科技大學(xué)理學(xué)院1第五講全微分方程與積分因子三、積分因子法一、全微分方程與原函數(shù)二、全微分方程判定定理與不定積分法四、小結(jié)西南科技大學(xué)理學(xué)院2定義:即(,)(,)(,)duxyMxydxNxydy??(
2024-10-16 21:13