【總結(jié)】第6章常微分方程的數(shù)值解法???????0')(),,(uaubtautfu0()(,())dtautufu??????uuLutfut
2025-05-02 05:32
【總結(jié)】機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束?第十節(jié)歐拉方程歐拉方程)(1)1(11)(xfypyxpyxpyxnnnnnn?????????)(為常數(shù)kp,tex?令常系數(shù)線性微分方程xtln?即第十二章歐拉方程的算子解法:)(1)1(11)(xfypyxpyxpyxnn
2025-08-05 06:25
【總結(jié)】目錄上頁(yè)下頁(yè)返回結(jié)束一、一階微分方程求解1.一階標(biāo)準(zhǔn)類型方程求解關(guān)鍵:辨別方程類型,掌握求解步驟2.一階非標(biāo)準(zhǔn)類型方程求解(1)變量代換法——代換自變量代換因變量代換某組合式(2)積分因子法——選積分因子,解全微分方程四個(gè)標(biāo)準(zhǔn)類型
2025-10-10 17:11
【總結(jié)】目錄上頁(yè)下頁(yè)返回結(jié)束§一階隱式微分方程一階顯式微分方程),(yxfy??一階隱式微分方程0),,(??yyxF()能從上式中解出,y?就可以化成顯式方程。例1求解微分方程.0)()(2????xydxdyyxdxdy目錄上頁(yè)下頁(yè)返回
【總結(jié)】OrdinaryDifferentialEquations?一階常微分方程的初值問題:?節(jié)點(diǎn):x1x2…xn?步長(zhǎng)為常數(shù)???????00)(),(yxyyxfdxdy1???iixxh?一歐拉方法(
2025-05-17 20:19
【總結(jié)】1常微分方程OrdinaryDifferentialEquations(5)高階常系數(shù)線性微分方程惺恰突訣粹能片扛瞬雒境畝誹率衙荇栽爸檢磷觖錦梅呆布嵋笑賤縶腹鏈雜查再芪濘兄罰裂篷莨盈逞窘胡恭鈀胗蹲躅擔(dān)溽擁絳伊渙蛩鐵麝瑭攥絨匆尾渾呃踺遲窖斗七缽畔諱戌脧挪饑飼硪阿璧趕懂稻夫財(cái)奪惟瘧枇仵孛罌體絞滋廩僅2§4.高階線性微分方程(
2025-10-10 18:02
【總結(jié)】引言回顧?靜力學(xué)研究物體在力系作用下的平衡規(guī)律及力系的簡(jiǎn)化;?運(yùn)動(dòng)學(xué)從幾何觀點(diǎn)研究物體的運(yùn)動(dòng),而不涉及物體所受的力;?動(dòng)力學(xué)研究物體的機(jī)械運(yùn)動(dòng)與作用力之間的關(guān)系。動(dòng)力學(xué)就是從因果關(guān)系上論述物體的機(jī)械運(yùn)動(dòng)。是理論力學(xué)中最具普遍意義的部分,靜力學(xué)、運(yùn)動(dòng)學(xué)則是動(dòng)力學(xué)的特殊情況。低速、宏觀物體的機(jī)械運(yùn)動(dòng)的普遍規(guī)律。
2025-06-16 14:51
【總結(jié)】湖南工程學(xué)院微分方程數(shù)值解法實(shí)驗(yàn)報(bào)告專業(yè)班級(jí)姓名學(xué)號(hào)組別信息與計(jì)算科學(xué)1001鄧鶴201010010215實(shí)驗(yàn)日期2013年5月9日第4次實(shí)驗(yàn)指導(dǎo)老師楊繼明評(píng)分實(shí)驗(yàn)名稱用差分格式求雙曲型方程的邊值問題實(shí)驗(yàn)?zāi)康氖煜ふ莆针p曲型方程邊值問題的差分格式并程序?qū)崿F(xiàn)實(shí)驗(yàn)原理與步驟:利用差分格式求下面波動(dòng)方程混合邊
2025-07-21 03:07
【總結(jié)】偏微分方程組解法某厚度為10cm平壁原溫度為20,現(xiàn)其兩側(cè)面分別維持在20和120,試求經(jīng)過8秒后平壁內(nèi)溫度分布,并分析溫度分布隨時(shí)間的變化直至溫度分布穩(wěn)定為止。式中為導(dǎo)溫系數(shù),;。解:模型轉(zhuǎn)化為標(biāo)準(zhǔn)形式:初始條件為:邊界條件為:,函數(shù):%偏微分方程(一維動(dòng)態(tài)傳熱)function[c,f,s]=pdefu
2025-06-19 21:46
【總結(jié)】1微分方程的例題分析及解法本單元的基本內(nèi)容是常微分方程的概念,一階常微分方程的解法,二階常微分方程的解法,微分方程的應(yīng)用。一、常微分方程的概念本單元介紹了微分方程、常微分方程、微分方程的階、解、通解、特解、初始條件等基本概念,要正確理解這些概念;要學(xué)會(huì)判別微分方程的類型,理解線性微分方程解的結(jié)構(gòu)定理。二、一階常微分方程的解法本
2025-01-09 07:10
【總結(jié)】微分方程數(shù)值解法實(shí)驗(yàn)報(bào)告姓名:班級(jí):學(xué)號(hào):一:?jiǎn)栴}描述求解邊值問題:其精確解為問題一:取步長(zhǎng)h=k=1/64,1/128,作五點(diǎn)差分格式,用Jacobi迭代法,Gauss_Seidel迭代法,SOR 迭代法(w=)。求解差分方程,以前后兩次重合到小數(shù)點(diǎn)后四位的迭代值作為解的近似值,比較三
2025-07-21 17:34
【總結(jié)】上頁(yè)下頁(yè)返回結(jié)束2022/3/131第一節(jié)微分方程的基本概念一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第五章常微分方程上頁(yè)下頁(yè)返回結(jié)束2022/3/132例1一曲線通過點(diǎn)(1,2),
2025-02-21 12:49
【總結(jié)】引例:破案問題某公安局于晚上7時(shí)30分發(fā)現(xiàn)一具尸體,當(dāng)天晚上8點(diǎn)20分,法醫(yī)測(cè)得尸體溫度為℃,1小時(shí)后,尸體被抬走的時(shí)候又測(cè)得尸體的溫度為℃。假定室溫在幾個(gè)小時(shí)內(nèi)均為℃,由案情分析得知張某為此案的主要嫌疑犯,但張某矢口否認(rèn),并有證人說:“下午張某一直在辦公室,下午5時(shí)打了一個(gè)電話后才離開辦公室”
2025-10-07 18:30
【總結(jié)】目錄上頁(yè)下頁(yè)返回結(jié)束一階微分方程的習(xí)題課(一)一、一階微分方程求解二、解微分方程應(yīng)用問題解法及應(yīng)用第七章目錄上頁(yè)下頁(yè)返回結(jié)束一、一階微分方程求解1.一階標(biāo)準(zhǔn)類型方程求解關(guān)鍵:辨別方程類型,掌握求解步驟2.一階
2025-10-25 16:13
【總結(jié)】演示課件之三微分方程解的性態(tài)演示實(shí)驗(yàn)一、Lorenz微分方程模型實(shí)驗(yàn)?zāi)康淖寣W(xué)生觀察常微分方程組解的某些特征,從而揭示其中的數(shù)學(xué)規(guī)律和奧妙!著名的Lorenz微分方程模型:假定參數(shù)分別取值為:β=8/3,σ=10,ρ=28
2025-09-25 14:58