【總結(jié)】│排列、組合│知識(shí)梳理知識(shí)梳理1.排列(1)定義:從n個(gè)不同元素中任取m(m≤n)個(gè)元素,排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.(2)排列數(shù)定義:從n個(gè)不同元素中取出m(m≤n)個(gè)元素的的個(gè)數(shù),叫做從
2025-08-05 07:24
【總結(jié)】排列組合問(wèn)題的常見(jiàn)解法,分給7個(gè)班,每班至少一個(gè),有多少種分配方案?解:因?yàn)?0個(gè)名額沒(méi)有差別,把它們排成一排.相鄰名額之間形成9個(gè)空隙.在9個(gè)空檔中選6個(gè)位置插個(gè)隔板,可把名額分成7份,對(duì)應(yīng)地分給7個(gè)班級(jí),每一種插板方法對(duì)應(yīng)一種分法共有種分法.注:這和投信問(wèn)題是不同的,投信問(wèn)題的關(guān)鍵是信不同,郵筒也不同,而這里的問(wèn)題是郵筒不同,但信是相同的.即班級(jí)不同,但名額都是一
2025-08-05 08:51
【總結(jié)】二十種排列組合問(wèn)題的解法排列組合問(wèn)題聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,因此解決排列組合問(wèn)題,首先要認(rèn)真審題,弄清楚是排列問(wèn)題、組合問(wèn)題還是排列與組合綜合問(wèn)題;其次要抓住問(wèn)題的本質(zhì)特征,采用合理恰當(dāng)?shù)姆椒▉?lái)處理.教學(xué)目標(biāo).;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題.提高學(xué)生解決問(wèn)題分析問(wèn)題的能力.復(fù)習(xí)鞏固(加法原理)完成一件事,有類辦法,在第1類辦法中
2025-03-25 02:37
【總結(jié)】排列組合問(wèn)題解題思路首先,怎樣分析排列組合綜合題?1)使用“分類計(jì)數(shù)原理”還是“分步計(jì)數(shù)原理”要根據(jù)我們完成某事件時(shí)采取的方式而定,分類來(lái)完成這件事時(shí)用“分類計(jì)數(shù)原理”,分步來(lái)完成這件事時(shí)就用“分步計(jì)數(shù)原理”,怎樣確定分類,還是分步驟?“分類”表現(xiàn)為其中任何一類均可獨(dú)立完成所給的事件,而“分步驟”必須把各步驟均完成才能完成所給事件,所以準(zhǔn)確理解兩個(gè)原理強(qiáng)調(diào)完成一件事情的幾類辦法互不干擾,
2025-08-05 07:40
【總結(jié)】正難則反總體淘汰策略例0,1,2,3,4,5,6,7,8,9這十個(gè)數(shù)字中取出三個(gè)數(shù),使其和為不小于10的偶數(shù),不同的取法有多少種?解:這問(wèn)題中如果直接求不小于10的偶數(shù)很困難,可用總體淘汰法。這十個(gè)數(shù)字中有5個(gè)偶數(shù)5個(gè)奇數(shù),所取的三個(gè)數(shù)含有3個(gè)偶數(shù)的取法有____,只含有
2025-08-05 07:03
【總結(jié)】;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題。提高學(xué)生解決問(wèn)題分析問(wèn)題的能力合問(wèn)題.教學(xué)目標(biāo)計(jì)數(shù)原理。完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法,…,在第n類辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法.
2024-10-19 05:23
【總結(jié)】......計(jì)數(shù)問(wèn)題教學(xué)目標(biāo)、組合的意義;正確區(qū)分排列、組合問(wèn)題;、排列數(shù)和組合數(shù)的意義,能根據(jù)具體的問(wèn)題,寫(xiě)出符合要求的排列或組合;;、分析與數(shù)字有關(guān)的計(jì)數(shù)問(wèn)題,以及與其他專題的綜合運(yùn)用,培養(yǎng)
2025-03-24 03:08
【總結(jié)】怎樣解排列組合問(wèn)題在這幾次??贾校l(fā)現(xiàn)同學(xué)們?cè)趯W(xué)習(xí)排列組合中有許多問(wèn)題?,F(xiàn)就排列組合給同學(xué)們講講幾種方法。首先,怎樣分析排列組合綜合題?1)使用“分類計(jì)數(shù)原理”還是“分步計(jì)數(shù)原理”要根據(jù)我們完成某事件時(shí)采取的方式而定,分類來(lái)完成這件事時(shí)用“分類計(jì)數(shù)原理”,分步來(lái)完成這件事時(shí)就用“分步計(jì)數(shù)原理”,怎樣確定分類,還是分步驟?“分類”表現(xiàn)為其中任何一類均可獨(dú)立完成所給的事件,而
2025-06-07 18:35
【總結(jié)】基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問(wèn)題基礎(chǔ)知識(shí)1:知識(shí)結(jié)構(gòu)網(wǎng)絡(luò)圖復(fù)習(xí)名稱內(nèi)容分類原理分步原理定義相同點(diǎn)不同點(diǎn)做一件事或完成一項(xiàng)工作的方法數(shù)直接(分類
2024-11-11 02:53
【總結(jié)】例1)...1)(1)(...1()(425xxxxxxxg?????????解其中展開(kāi)式的一般項(xiàng)為,321nrrrxxxx?40,20,50,321321?????????rrrnrrr是什么數(shù)列的生成函數(shù)?.數(shù)解的個(gè)數(shù)恰為上述方程的非負(fù)整的系數(shù)nnhx的生成函數(shù)。的個(gè)數(shù)上述方程的非負(fù)整數(shù)解是所以,nhx
2025-05-12 17:10
【總結(jié)】WORD格式可編輯排列組合方法篇1、兩個(gè)原理及區(qū)別(加法原理)(乘法原理)2、排列數(shù)公式排列數(shù)公式==.(,∈N*,且).注:規(guī)定.排列恒等式(1);(2).會(huì)推以下恒等式(1);(2);(3);(4)
2025-08-05 07:38
【總結(jié)】排列組合之定序問(wèn)題?教學(xué)目標(biāo):掌握定序問(wèn)題的解決方法?教學(xué)重點(diǎn):掌握倍縮法、空位法和逐個(gè)插空法?教學(xué)難點(diǎn):能夠?qū)⒕唧w問(wèn)題轉(zhuǎn)化為定序問(wèn)題問(wèn)題總述對(duì)若干個(gè)元素進(jìn)行排列時(shí)要求某幾個(gè)元素順序一定的排列問(wèn)題,這類問(wèn)題比較抽象解決方法技巧性很強(qiáng),特別是一些具體問(wèn)題要求能夠轉(zhuǎn)化為定序問(wèn)題例題講解
2025-08-05 07:17
【總結(jié)】排列組合應(yīng)用題解法綜述計(jì)數(shù)問(wèn)題中排列組合問(wèn)題是最常見(jiàn)的,由于其解法往往是構(gòu)造性的,因此方法靈活多樣,不同解法導(dǎo)致問(wèn)題難易變化也較大,而且解題過(guò)程出現(xiàn)“重復(fù)”和“遺漏”的錯(cuò)誤較難自檢發(fā)現(xiàn)。因而對(duì)這類問(wèn)題歸納總結(jié),并把握一些常見(jiàn)解題模型是必要的。基本原理組合排列排列數(shù)公式組合數(shù)
2025-08-15 22:10
【總結(jié)】排列組合專題訓(xùn)練1.(2014?四川)六個(gè)人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ?。.192種B.216種C.240種D.288種考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題.菁優(yōu)網(wǎng)版權(quán)所有專題:應(yīng)用題;排列組合.分析:分類討論,最左端排甲;最左端只排乙,最右端不能排甲,根據(jù)加法原理可得結(jié)論.
2025-08-05 07:27
【總結(jié)】數(shù)學(xué)廣角之排列組合主講田村中心小學(xué)劉勝門票5元可以怎樣付錢?門票5元門票5元門票5元門票5元門票5元有幾種穿法?1234每?jī)蓚€(gè)人進(jìn)行一場(chǎng)比賽,一共要比幾場(chǎng)?買一個(gè)拼音本,可以怎樣付錢?
2024-12-13 17:38