【摘要】l:x+y-3=0及曲線C:(x-3)2+(y-2)2=2,則點M(2,1)()A.在直線l上,但不在曲線C上B.在直線l上,也在曲線C上C.不在直線l上,也不在曲線C上D.不在直線l上,但在曲線C上解析:選x=2,y=1代入直線l:x+y-3
2024-12-17 06:41
【摘要】1.(2021·高考陜西卷)設拋物線的頂點在原點,準線方程為x=-2,則拋物線的方程是()A.y2=-8xB.y2=-4xC.y2=8xD.y2=4x解析:選x=-2,可知拋物線為焦點在x軸正半軸上的標準方程,同時得p=4,所以標準方程為y2=2px=
【摘要】aC'B'A'D'DABCGMC'B'A'D'DABC空間向量及其加減數乘運算【學習目標】,掌握空間向量的線性運算及其性質;、減法、數乘及它們的運算律;【自主學習】空間向量,談談空間向量的概念、表示方法。思考:
2024-12-01 23:24
【摘要】x2-y2=4的焦點且垂直于實軸的直線與雙曲線交于A,B兩點,則AB的長為()A.2B.4C.8D.42解析:選x2-y2=4的焦點為(±22,0),把x=22代入并解得y=±2,∴|AB|=2-(-2)=4.2.(2
【摘要】講練學案部分§空間向量及其加減運算.知識點一空間向量的概念判斷下列命題是否正確,若不正確,請簡述理由.①向量AB與AC是共線向量,則A、B、C、D四點必在一條直線上;②②單位向量都相等;③任一向量與它的相反向量不相等;④四邊形ABCD是平行四邊形
2024-12-20 01:49
【摘要】1.(2021·唐山調研)將“x2+y2≥2xy”改寫成全稱命題,下列說法正確的是()A.?x,y∈R,都有x2+y2≥2xyB.?x0,y0∈R,使x20+y20≥2x0y0C.?x0,y0,都有x2+y2≥2xyD.?x00,y00
【摘要】1.“ab”是“a|b|”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件解析:選a|b|?ab,而ab?/a|b|.2.(2021·高考天津卷)設集合A={x∈R|x-20},B={x
【摘要】l的方向向量,平面α的法向量分別是a=(3,2,1),u=(-1,2,-1),則l與α的位置關系是()A.l⊥αB.l∥αC.l與α相交但不垂直D.l∥α或l?α解析:選D.∵a·u=-3+4-1=0,∴a⊥u,
2024-12-17 06:40
【摘要】空間向量及其運算【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐?!緦W習目標】1.理解空間向量的概念,掌握其表示方法;2.會用圖形說明空間向量加法、減法、數乘向量及它們的運算律;3.能用空間向量的運算意義及運算律解決簡單的立體幾何中的問題.【重點】能用空間向量的運算意義及運算律解決
2024-11-30 16:52
【摘要】l的方向向量與平面α的法向量的夾角等于120°,則直線l與平面α所成的角等于()A.120°B.60°C.30°D.以上均錯答案:CABCDA1B1C1D1中,AB=2,BC=2,DD1=3,則AC與BD1所成角的
【摘要】l:x+y-3=0,橢圓x24+y2=1,則直線與橢圓的位置關系是()A.相交B.相切C.相離D.相切或相交解析:選x+y-3=0代入x24+y2=1,得x24+(3-x)2=1,即5x2-24x+32=0.
【摘要】6x2+y2=6的長軸端點坐標為()A.(-1,0),(1,0)B.(-6,0),(6,0)C.(-6,0),(6,0)D.(0,-6),(0,6)解析:選y26+x2=1,∴a2=6,且焦點在y軸上.∴長軸端點坐標為(0,-6),
【摘要】第三章間向量與立體幾何§空間向量及其運算知識點一空間向量概念的應用給出下列命題:①將空間中所有的單位向量移到同一個點為起點,則它們的終點構成一個圓;②若空間向量a、b滿足|a|=|b|,則a=b;③
2024-12-20 22:40
【摘要】第一課時空間向量及其加減與數乘運算教學要求:理解空間向量的概念,掌握其表示方法;會用圖形說明空間向量加法、減法、數乘向量及它們的運算律;能用空間向量的運算意義及運算律解決簡單的立體幾何中的問題.教學重點:空間向量的加減與數乘運算及運算律.教學難點:由平面向量類比學習空間向量.教學過程:一、復習引入1、有關平面向量的一
2024-12-01 22:43
【摘要】§3.空間向量的數乘運算知識點一空間向量的運算已知ABCD—A′B′C′D′是平行六面體.(1)化簡12'23AABCAB??(2)設M是底面ABCD的中心,N是側面BCC′B′對角線BC′上的34分點,設'MNABADAA???