【摘要】拋物線的標(biāo)準(zhǔn)方程教學(xué)目標(biāo)]知識(shí)與技能1.掌握拋物線的定義和標(biāo)準(zhǔn)方程及其推導(dǎo)過(guò)程,理解拋物線中的基本量;2.掌握求拋物線的標(biāo)準(zhǔn)方程的基本方法;[過(guò)程與方法情感態(tài)度與價(jià)值觀教學(xué)重難點(diǎn)能根據(jù)已知條件求拋物線的標(biāo)準(zhǔn)方程教學(xué)流程\內(nèi)容\板書關(guān)鍵點(diǎn)撥加工潤(rùn)色一、復(fù)
2024-12-02 00:30
【摘要】{a,b,c}是空間向量的一個(gè)基底,則可以與向量p=a+b,q=a-b構(gòu)成基底的向量是()A.a(chǎn)B.bC.a(chǎn)+2bD.a(chǎn)+2c解析:選D.∵a+2c,a+b,a-b為不共面向量,∴a+2c與p、q能構(gòu)成一個(gè)基底.OABC中,OA→=
2024-12-17 06:40
【摘要】a、b、c是任意的非零平面向量,且它們相互不共線,下列命題:①(a·b)c-(c·a)b=0;②|a|-|b||a-b|;③(b·a)c-(c·a)b不與c垂直;④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中
【摘要】a=(1,1,0),b=(0,1,1),c=(1,0,1),p=a-b,q=a+2b-c,則p·q=()A.-1B.1C.0D.-2解析:選=a-b=(1,0,-1),q=a+2b-c=(0,3,1),∴p·q
【摘要】1.(2021·唐山調(diào)研)將“x2+y2≥2xy”改寫成全稱命題,下列說(shuō)法正確的是()A.?x,y∈R,都有x2+y2≥2xyB.?x0,y0∈R,使x20+y20≥2x0y0C.?x0,y0,都有x2+y2≥2xyD.?x00,y00
2024-12-17 06:41
【摘要】a,b是不共線的兩個(gè)向量,λ,μ∈R,且λa+μb=0,則()A.λ=μ=0B.a(chǎn)=b=0C.λ=0,b=0D.μ=0,a=0解析:選A.∵a,b不共線,∴a,b為非零向量,又∵λa+μb=0,∴λ=μ=
【摘要】1.“ab”是“a|b|”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件解析:選a|b|?ab,而ab?/a|b|.2.(2021·高考天津卷)設(shè)集合A={x∈R|x-20},B={x
【摘要】拋物線及其標(biāo)準(zhǔn)方程【學(xué)習(xí)目標(biāo)】掌握拋物線的定義、標(biāo)準(zhǔn)方程、幾何圖形.【重點(diǎn)難點(diǎn)】拋物線的定義、標(biāo)準(zhǔn)方程、幾何圖形.【學(xué)習(xí)過(guò)程】一、自主預(yù)習(xí)(預(yù)習(xí)教材理P64~P67,文P56~P59找出疑惑之處)復(fù)習(xí)1:函數(shù)2261yxx???的圖象是,它的頂點(diǎn)坐標(biāo)是(),對(duì)稱
2024-12-17 06:47
【摘要】l:x+y-3=0,橢圓x24+y2=1,則直線與橢圓的位置關(guān)系是()A.相交B.相切C.相離D.相切或相交解析:選x+y-3=0代入x24+y2=1,得x24+(3-x)2=1,即5x2-24x+32=0.
【摘要】6x2+y2=6的長(zhǎng)軸端點(diǎn)坐標(biāo)為()A.(-1,0),(1,0)B.(-6,0),(6,0)C.(-6,0),(6,0)D.(0,-6),(0,6)解析:選y26+x2=1,∴a2=6,且焦點(diǎn)在y軸上.∴長(zhǎng)軸端點(diǎn)坐標(biāo)為(0,-6),
【摘要】§拋物線及標(biāo)準(zhǔn)方程設(shè)計(jì)人:趙軍偉審定:數(shù)學(xué)備課組【學(xué)習(xí)目標(biāo)】、拋物線的標(biāo)準(zhǔn)方程及其推導(dǎo)過(guò)程.,提高分析、對(duì)比、概括、轉(zhuǎn)化等方面的能力【學(xué)習(xí)重點(diǎn)】掌握拋物線的定義、拋物線的標(biāo)準(zhǔn)方程及其推導(dǎo)過(guò)程【學(xué)習(xí)難點(diǎn)】掌握解析幾何的基本思想方法,提高分析、對(duì)比、概括、轉(zhuǎn)化等方面的能力【知識(shí)
2024-12-21 08:02
【摘要】1拋物線及其標(biāo)準(zhǔn)方程(一)2球在空中運(yùn)動(dòng)的軌跡是拋物線規(guī)律,那么拋物線它有怎樣的幾何特征呢?二次函數(shù)2(0)yaxbxca????又到底是一條怎樣的拋物線?拋物線及其標(biāo)準(zhǔn)方程(一)3復(fù)習(xí)回顧:我們知道,橢圓、雙曲線的有共同的幾何特征:都可
2024-11-29 12:02
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)拋物線的標(biāo)準(zhǔn)方程課后知能檢測(cè)蘇教版選修1-1一、填空題1.(20212揚(yáng)州高二檢測(cè))拋物線y2=12x的焦點(diǎn)坐標(biāo)為________.【解析】拋物線y2=12x的焦點(diǎn)在x軸的正半軸上,且p=14,∴p2=18,故焦點(diǎn)坐標(biāo)為(18,0
2024-12-16 18:02
【摘要】l的方向向量,平面α的法向量分別是a=(3,2,1),u=(-1,2,-1),則l與α的位置關(guān)系是()A.l⊥αB.l∥αC.l與α相交但不垂直D.l∥α或l?α解析:選D.∵a·u=-3+4-1=0,∴a⊥u,
【摘要】l的方向向量與平面α的法向量的夾角等于120°,則直線l與平面α所成的角等于()A.120°B.60°C.30°D.以上均錯(cuò)答案:CABCDA1B1C1D1中,AB=2,BC=2,DD1=3,則AC與BD1所成角的