【摘要】高中數(shù)學解析幾何圓錐曲線,點、分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.(1)求點P的坐標;(2)設M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.,在直角坐標系中,設橢圓的左右兩個焦點分別為.過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為.(1)求橢圓的方
2025-07-30 02:05
【摘要】高中平面解析幾何知識點總結1.直線的傾斜角與斜率:(1)直線的傾斜角:在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向旋轉到和直線重合時所轉的最小正角記為叫做直線的傾斜角.傾斜角,斜率不存在.(2)直線的斜率:.兩點坐標為、.2.直線方程的五種形式:(1)點斜式:(直線過點,且斜率為).注:當直線斜率不存在時,不能用點斜式表示,此時方
2025-07-03 16:50
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2025-07-31 00:15
【摘要】直線和圓錐曲線的位置關系X授課:楊同官直線和圓錐曲線的位置關系一、基礎訓練:2.過點與拋物線只有一個公共點的直線的方程為;1.直線
2024-11-18 22:12
【摘要】聚焦考點直線和圓錐曲線的位置關系 直線與圓錐曲線的位置關系是歷年高考命題的熱點;試題具有一定的綜合性,覆蓋面大,不僅考查“三基”掌握的情況,而且重點考查學生的作圖、數(shù)形結合、等價轉化、分類討論、邏輯推理、合理運算,以及運用數(shù)學知識分析問題和解決問題的能力。在近幾年的高考中,每年風格都在變換,考查思維的敏捷性,在探索中求創(chuàng)新?! 【唧w來說,這些問題常涉及到圓錐曲線
2025-07-28 17:03
【摘要】微專題圓錐曲線幾何條件的處理策略幾何性質(zhì)代數(shù)實現(xiàn)對邊平行斜率相等,或向量平行對邊相等長度相等,橫(縱)坐標差相等對角線互相平分中點重合例1.(2015,新課標2理科20)已知橢圓,直線不過原點且不平行于坐標軸,與有兩個交點,,線段的中點為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點,延長線段與交于點,四邊
2024-08-18 07:11
【摘要】第13講線性規(guī)劃、直線與圓第14講圓錐曲線的定義、標準方程與性質(zhì)第15講直線與圓錐曲線專題4直線、圓與圓錐曲線專題4直線、圓與圓錐曲線知識網(wǎng)絡構建專題4知識網(wǎng)絡構建解析幾何及其綜合應用專題4知識網(wǎng)絡構建專題4知識
2025-07-30 19:50
【摘要】把直線方程代入圓的方程得到一元二次方程計算判別式?0,相交?=0,相切?0,相離[1]判斷直線與橢圓位置關系的根本方法是解直線方程和橢圓方程組成的方程組[2]把直線方程代入橢圓方程后,若一元二次方程好解,則應解方程;若一元二次方程不好解,
2024-11-17 12:55
【摘要】知識點1、直線和圓錐曲線位置關系的判斷2、與弦長有關的問題一、直線與圓錐曲線位置關系的判斷除直線和圓的位置關系外,一般都用代數(shù)法,通過方程組解的個數(shù)判斷直線和曲線的位置關系。(1)△>0方程有兩個不等的實數(shù)根直線與曲線有兩個不同的交點直線和曲線相交(2)△=0方程有兩個相等的實數(shù)根直線與曲線有
2025-05-07 22:17
【摘要】直線和圓錐曲線經(jīng)??疾榈囊恍╊}型題型五:共線向量問題解析幾何中的向量共線,就是將向量問題轉化為同類坐標的比例問題,再通過未達定理------同類坐標變換,將問題解決。此類問題不難解決。例題7、設過點D(0,3)的直線交曲線M:于P、Q兩點,且,求實數(shù)的取值范圍。分析:由可以得到,將P(x1,y1),Q(x2,y2),代人曲線方程,解出點的坐標,用表示出來。解:設P(x1,
2025-07-28 16:58
【摘要】直線和圓錐曲線經(jīng)??疾榈囊恍╊}型直線與橢圓、雙曲線、拋物線中每一個曲線的位置關系都有相交、相切、相離三種情況,從幾何角度可分為三類:無公共點,僅有一個公共點及有兩個相異公共點對于拋物線來說,平行于對稱軸的直線與拋物線相交于一點,但并不是相切;對于雙曲線來說,平行于漸近線的直線與雙曲線只有一個交點,但并不相切.直線和橢圓、雙曲線、拋物線中每一個曲線的公共點問題,可以轉化為它們的方程所
2025-07-28 16:59
【摘要】二圓錐曲線的參數(shù)方程更上一層樓基礎·鞏固1直線=1與橢圓=1相交于A、B兩點,該橢圓上點P使得△PAB的面積等于3,這樣的點P共有()思路解析:設P1(4cosα,3sinα),α∈(0,),則=×4sinα+×3×4cosα=6(si
2024-08-18 03:29
【摘要】微專題——圓錐曲線幾何條件的處理策略圓錐曲線處理心法:一、幾何條件巧處理,事半功倍!二、謀定思路而后動,胸有成竹!三、代數(shù)求解不失分,穩(wěn)操勝券!四、解后反思收貨大,觸類旁通!幾何性質(zhì)代數(shù)實現(xiàn)對邊平行斜率相等,或向量平行對邊相等長度相等,橫(縱)坐標差相等對角線互相平分中點重合例1.(2015,新課
2025-07-30 01:50
【摘要】第九章 幾何問題的轉換解析幾何幾何問題的轉換一、基礎知識:在圓錐曲線問題中,經(jīng)常會遇到幾何條件與代數(shù)條件的相互轉化,合理的進行幾何條件的轉化往往可以起到“四兩撥千斤”的作用,極大的簡化運算的復雜程度,在本節(jié)中,將列舉常見的一些幾何條件的轉化。1、在幾何問題的轉化
2025-03-31 00:03
【摘要】圓錐曲線中參數(shù)范圍的求解策略方法一:利用二次方程根的判別式構造不等式若題設中給出直線(或曲線)與曲線有公共點或無公共點時,可以把直線方程(或曲線方程)與曲線方程聯(lián)立起來,消去某一個未知數(shù)得到含另一個未知數(shù)的一元二次方程,就能利用判別式建立起所含參數(shù)的不等式.例1已知雙曲線C的方程為,若直線與雙曲線C恒有兩個不同的交點A和B,且(其中O為原點),求k的取值范圍.【解析】設,
2025-06-30 15:30