【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2025-07-31 00:15
【摘要】知識結構?????圓錐曲線橢圓雙曲線拋物線標準方程幾何性質標準方程幾何性質標準方程幾何性質第二定義第二定義統(tǒng)一定義綜合應用橢圓雙曲線拋物線幾何條件與兩個定點的距離的和等于常數(shù)
2024-08-18 04:45
【摘要】微專題圓錐曲線幾何條件的處理策略幾何性質代數(shù)實現(xiàn)對邊平行斜率相等,或向量平行對邊相等長度相等,橫(縱)坐標差相等對角線互相平分中點重合例1.(2015,新課標2理科20)已知橢圓,直線不過原點且不平行于坐標軸,與有兩個交點,,線段的中點為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點,延長線段與交于點,四邊
2024-08-18 07:11
【摘要】解析幾何中的參數(shù)取值范圍問題例1:選題意圖:利用三角形中的公理構建不等式xy設分別是橢圓的左、右焦點,若在直線上存在點P,使線段的中垂線過點,求橢圓離心率的取值范圍.解法一:設P,F(xiàn)1P的中點Q的坐標為,則kF1P=,kQF2=.由kF1P·kQF2=-1,得y2=.因為y2≥0,但注意b2+2c2≠0,所以2c2-b2>0,
2025-03-31 00:03
【摘要】淺談圓錐曲線問題中的平面幾何方法農二師華山中學金兆斌(附三角形的內角及外角平分線性質的證明.)特別指出的是,上述性質對所有的圓錐曲線都成立.OyxBACD更一般的,如果兩條直線與其對稱軸所成的角互補,都有以上的性質.
2024-10-06 18:53
【摘要】......關于圓錐曲線的中點弦問題直線與圓錐曲線相交所得弦中點問題,是解析幾何中的重要內容之一,也是高考的一個熱點問題。這類問題一般有以下三種類型:(1)求中點弦所在直線方程問題;(2)求弦中點的軌跡方程問題;
2025-03-31 00:02
【摘要】第九章 圓錐曲線的離心率問題解析幾何圓錐曲線的離心率問題離心率是圓錐曲線的一個重要幾何性質,一方面刻畫了橢圓,雙曲線的形狀,另一方面也體現(xiàn)了參數(shù)之間的聯(lián)系。一、基礎知識:1、離心率公式:(其中為圓錐曲線的半焦距)(1)橢圓:(2)雙曲線:2、圓錐曲線中的幾
2025-03-31 00:04
【摘要】利用反證法證明圓錐曲線的光學性質迤山中學數(shù)學組賈浩利用反證法證明圓錐曲線的光學性質反證法又稱歸謬法,是高中數(shù)學證明中常用的一種方法。利用反證法證明問題的思路為:首先在原命題的條件下,假設結論的反面成立,然后推理出明顯矛盾的結果,從而說明假設不成立,則原命題得證。在光的折射定律中,從點發(fā)出的光經過直線折射后,反射光
2025-06-28 15:52
【摘要】圓錐曲線中的定點問題明對任意情況都成立找到定點,再證方法三:通過特殊位置的值求出方法二:通過計算可以)則直線過(例如的關系與方法一:找到設直線為基本思想:.,022,bkbbkbkxy????【例1-1】已知拋物線C:y2=2px(p0)的焦點F(1,0),O為坐
【摘要】圓錐曲線過定點問題一、小題自測1.無論取任何實數(shù),直線必經過一個定點,則這個定點的坐標為.2.已知直線;圓,則直線與圓的位置關系為.二、幾個常見結論:滿足一定條件的曲線上兩點連結所得的直線過定點或滿足一定條件的曲線過定點,這構成了過定點問題。1、過定點模型:是圓錐曲線上的兩動點,是一定點,其
【摘要】第九章 圓錐曲線中的存在性問題解析幾何圓錐曲線中的存在性問題一、基礎知識1、在處理圓錐曲線中的存在性問題時,通常先假定所求的要素(點,線,圖形或是參數(shù))存在,并用代數(shù)形式進行表示。再結合題目條件進行分析,若能求出相應的要素,則假設成立;否則即判定不存在2、存在性問題常見要素的代數(shù)形式:
【摘要】麻城市第一中學圓錐曲線中的定點問題麻城一中王輝麻城市第一中學1.解析幾何中,定點問題是高考命題的一個熱點,也是一個難點,因為定點必然是在變化中所表現(xiàn)出來的不變量,所以可運用函數(shù)的思想方法,結合等式的恒成立求解,也就是說要與題中的可變量無關。2.求定點常用方法有兩種:①特殊到一般法,根據(jù)動點、
2024-08-18 04:47
【摘要】圓錐曲線有關弦的問題如果直線l與圓錐曲線C相交于兩個不同點A、B,那么線段AB稱為圓錐曲線C的一條弦,直線l稱為圓錐曲線C的一條割線。一、圓錐曲線的焦點弦過拋物線pxy22?的焦點的一條直線和這拋物線相交,兩個交點的縱坐標為.,,22121pyyyy??則這是拋物線焦點弦的一個重要性質。此外,與焦點弦有關的性質
2024-09-09 11:55
【摘要】微專題——圓錐曲線幾何條件的處理策略圓錐曲線處理心法:一、幾何條件巧處理,事半功倍!二、謀定思路而后動,胸有成竹!三、代數(shù)求解不失分,穩(wěn)操勝券!四、解后反思收貨大,觸類旁通!幾何性質代數(shù)實現(xiàn)對邊平行斜率相等,或向量平行對邊相等長度相等,橫(縱)坐標差相等對角線互相平分中點重合例1.(2015,新課
2025-07-30 01:50
【摘要】第九節(jié)圓錐曲線的綜合問題(理)抓基礎明考向提能力教你一招我來演練第八章平面解析幾何返回返回[備考方向要明了]考什么、拋物線的位置關系的思想方法.、定值、參數(shù)范圍等問題.
2024-08-18 03:29