【摘要】......圓錐曲線的性質(zhì)一、基礎(chǔ)知識(一)橢圓:1、定義和標(biāo)準(zhǔn)方程:(1)平面上到兩個定點的距離和為定值(定值大于)的點的軌跡稱為橢圓,其中稱為橢圓的焦點,稱為橢圓的焦距(2)標(biāo)準(zhǔn)方程:①焦點在軸上的橢
2025-06-28 16:01
【摘要】焦半徑公式:若點是拋物線上一點,則該點到拋物線的焦點的距離(稱為焦半徑)是:,焦點弦長公式:過焦點弦長拋物線上的動點可設(shè)為P或或P已知拋物線,過焦點F的直線交拋物線于A、B兩點,直線的傾斜角為,求證:。直線與拋物線的位置關(guān)系把直線的方程和拋物線的方程聯(lián)立起來得到一個方程組。(1)方程組有一組解直線與拋物線相交或相切(一個公共點);(2)方程組有二組解直線與
2024-08-07 00:13
【摘要】圓錐曲線的性質(zhì)及推廣應(yīng)用江西省撫州一中:張志恒目錄1引言 32圓錐曲線的分類,性質(zhì)及應(yīng)用 4圓錐曲線的分類 4圓錐曲線的性質(zhì) 5圓錐曲線在生活中的應(yīng)用 83圓錐曲線性質(zhì)的推廣應(yīng)用 11直線與圓錐曲線的位置關(guān)系的實際應(yīng)用 11數(shù)學(xué)問題在圓錐曲線中的推廣 13
2024-08-07 12:41
【摘要】圓錐曲線的幾何性質(zhì)xyoF11F2AB一、橢圓的幾何性質(zhì)(以+=1(a﹥b﹥0)為例) 1、⊿ABF2的周長為4a(定值)證明:由橢圓的定義即 2、焦點⊿PF1F2中:xyoF1F22P(1)S⊿PF1F2=(2)(S⊿PF1F2)max=bc(3)當(dāng)P在短軸上時,∠F1PF2最大證明:
2024-08-18 04:45
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2024-08-07 00:15
【摘要】1.已知橢圓(a>b>0),O為坐標(biāo)原點,P、Q為橢圓上兩動點,(1);(2)|OP|2+|OQ|2的最大值為;(3)的最小值是.圓錐曲線性質(zhì)對比橢圓雙曲線焦點三角形面積兩斜率乘積定值A(chǔ)B是橢圓的不平行于對稱軸的弦,M為AB的中點,則,即AB是雙曲線(a>0,b>0)的不平行于對稱軸的弦,M為AB的中點
2025-06-30 03:53
【摘要】WORD資料可編輯“圖形計算器與高中數(shù)學(xué)教學(xué)整合研究”課題教學(xué)設(shè)計案例、論文評選“類圓錐曲線”性質(zhì)的探究上海南匯中學(xué)李志鳳杰一、問題的提出學(xué)習(xí)解析幾何,我們知道曲線的圖像是圓,曲線的圖像是等軸雙曲線,而對于一般情況,曲線的圖像是什么?它們有什么
2025-04-13 07:30
【摘要】WORD資料可編輯橢圓與雙曲線的對偶性質(zhì)--(必背的經(jīng)典結(jié)論)橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦P
2025-04-23 13:13
【摘要】數(shù)學(xué)學(xué)科2012學(xué)年年度論文地址:佛山市順德區(qū)陳村鎮(zhèn)青云中學(xué)姓名:匡德智電話:13790039227圓錐曲線中的四點共圓性質(zhì)的應(yīng)用引理:設(shè)兩條直線()與二次曲線:()有四個交點,則這四個交點共圓的充要條件是證明:由、組成的曲線即:,所以,經(jīng)過它與的四個交點
2025-06-28 23:13
【摘要】第五節(jié)圓錐曲線的綜合應(yīng)用1.圓錐曲線的統(tǒng)一定義:平面內(nèi)到__________________________________________________________________是圓錐曲線,當(dāng)________時,軌跡是橢圓;當(dāng)________時,軌跡是雙曲線;當(dāng)________時,軌跡表示拋物線,定點F是圓錐曲線的一個________
2024-11-20 18:19
【摘要】第64講圓錐曲線的綜合應(yīng)用,第一頁,編輯于星期五:十六點五十七分。,第二頁,編輯于星期五:十六點五十七分。,第三頁,編輯于星期五:十六點五十七分。,第四頁,編輯于星期五:十六點五十七分。,第五頁,編輯...
2024-10-24 06:27
【摘要】圓錐曲線的解題技巧一、常規(guī)七大題型:(1)中點弦問題具有斜率的弦中點問題,常用設(shè)而不求法(點差法):設(shè)曲線上兩點為,,代入方程,然后兩方程相減,再應(yīng)用中點關(guān)系及斜率公式(當(dāng)然在這里也要注意斜率不存在的請款討論),消去四個參數(shù)。如:(1)與直線相交于A、B,設(shè)弦AB中點為M(x0,y0),則有。(2)與直線l相交于A、B,設(shè)弦AB中點為M(x0,y0
2025-03-31 00:04
【摘要】 圓錐曲線的定義、方程與性質(zhì)]1.設(shè)拋物線的頂點在原點,準(zhǔn)線方程為x=-2,則拋物線的方程是( )A.y2=-8xB.y2=8xC.y2=-4xD.y2=4x2.橢圓+=1的離心率為( )A.B.C.D.3.雙曲線2x2-y2=8的實軸長是( )A.2B.2C.4D.44.過拋物線y2=2px(p0)的焦點F的直
2024-08-05 20:57
【摘要】山東省嘉祥縣第四中學(xué)曾慶坤一、復(fù)習(xí)圓錐曲線的定義1、橢圓的第一定義與第二定義2、雙曲線的第一定義與第二定義3、拋物線的定義二、經(jīng)典回顧1、已知動圓M和圓內(nèi)切,并和圓外切,動圓圓心M的軌跡方程為
2024-11-14 14:25
【摘要】橢圓必背的經(jīng)典結(jié)論1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.4.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5.若在橢圓上,則過的橢圓的切線方程是.6.若在橢圓外,則過Po作橢圓的兩
2025-06-30 04:00