【正文】
山西師范大學(xué)本科畢業(yè)論文(設(shè)計(jì))常微分方程的初等解法與求解技巧姓 名張娟院 系數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院專 業(yè)信息與計(jì)算科學(xué)班 級(jí)12510201學(xué) 號(hào)1251020126指導(dǎo)教師王曉鋒答辯日期成 績常微分方程的初等解法與求解技巧內(nèi)容摘要常微分方程在數(shù)學(xué)中發(fā)揮著舉足輕重的作用,同時(shí)它的應(yīng)用在日常生活里隨處可見,、初等解法與求解技巧,前者主要有變量分離、積分因子、一階隱式微分方程的參數(shù)表示,通過舉例從中總結(jié)出其求解技巧,目的是掌握其求解技巧.【關(guān)鍵詞】變量分離 一階隱式微分方程 積分因子 求解技巧 Elementary Solution and Solving Skills of Ordinary Differential EquationAbstractOrdinary differential equations take up significant position in mathematics, and at the same time, the application of it can be seen everywhere in our daily life, therefore, it’s necessary to grasp the elementary solution of ordinary differential equations and solving skills. This paper mainly introduced the definition of ordinary differential equations, elementary solution method and solving skills, the former mainly included the separation of variables, integral factor, a parameterorder differential equations implicit representation, by way of examples to sum up their solving skills, the purpose is to master the skills to solve.【Key Words】the separation of variables the first order implicit differential equation integrating factor solution techniques目錄 1 1 1 1 2 6 6 8 9 9 11 13 13 18 18 19 20 21參考文獻(xiàn) 21致謝 22常微分方程的初等解法與求解技巧學(xué)生姓名:張娟 指導(dǎo)教師:王曉鋒常微分方程的實(shí)質(zhì)就是一個(gè)關(guān)系式,這個(gè)關(guān)系式是由自變量、未知函數(shù)和未知函數(shù)的導(dǎo)數(shù)組成的,且自變量的個(gè)數(shù)為一個(gè)[1]丁同仁,[M].北京:高等教育出版社,1998,127.1].其發(fā)展歷史經(jīng)歷了一個(gè)很漫長的過程,在這個(gè)發(fā)展過程中涌現(xiàn)出很多科學(xué)家例如歐拉、拉格朗日、柯西等,分別是“求通解”階段、“求定解”階段、“求所有解”的新階段[1].常微分方程在數(shù)學(xué)中占有很重要的地位,有很多偉人例如賽蒙斯都曾評(píng)價(jià)過常微分方程在數(shù)學(xué)中的地位,指出其在數(shù)學(xué)中的不可替代的作用[2] [美][M].:人民教育出版社,1981.[3]王高雄,周之銘,(第三