【摘要】......新課標(biāo)人教A版高中數(shù)學(xué)必修五典題精講()典題精講例1(1)已知0<x<,求函數(shù)y=x(1-3x)的最大值;(2)求函數(shù)y=x+的值域.思路分析:(1)由極值定理,可知需構(gòu)造某個(gè)和為定值,可考慮把括號(hào)內(nèi)外x的系數(shù)變
2025-03-28 00:14
【摘要】新課標(biāo)人教A版高中數(shù)學(xué)必修五典題精講()典題精講例1(1)已知0<x<,求函數(shù)y=x(1-3x)的最大值;(2)求函數(shù)y=x+的值域.思路分析:(1)由極值定理,可知需構(gòu)造某個(gè)和為定值,可考慮把括號(hào)內(nèi)外x的系數(shù)變成互為相反數(shù);(2)中,未指出x>0,因而不能直接使用基本不等式,需分x>0與x<0討論.(1)解法一:∵0<x<,∴1-3x>0.∴y=x(1-3x)=&
【摘要】全方位教學(xué)輔導(dǎo)教案學(xué)科:數(shù)學(xué)任課教師:授課時(shí)間:2012年11月3日星期姓名性別女年
2025-04-20 13:03
【摘要】基本不等式經(jīng)典習(xí)題1、已知x,y為正數(shù),則的最大值為▲2.實(shí)數(shù)、、滿足,則的最大值為▲.3、已知正實(shí)數(shù)x,y滿足,則xy的取值范圍為▲.【答案】[1,]4、設(shè)x,y是正實(shí)數(shù),且x+y=1,則的最小值為▲455.(浙江理16)設(shè)為實(shí)數(shù),若則的最大值是.6、(2010
2025-06-27 16:38
【摘要】......基本不等式習(xí)專(zhuān)題之基本不等式做題技巧【基本知識(shí)】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(4)當(dāng)且僅當(dāng)
2025-05-16 23:45
【摘要】第一篇:基本不等式與不等式基本證明 課時(shí)九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時(shí),關(guān)鍵在對(duì)已知條件的靈活...
2024-10-29 03:11
【摘要】§基本不等式2:2abab??(教學(xué)教案設(shè)計(jì))①各項(xiàng)皆為正數(shù);②和或積為定值;③注意等號(hào)成立的條件.利用基本不等式求最值時(shí),要注意條件已知x,y都是正數(shù),P,S是常數(shù).(1)xy=P?x+y≥2P(當(dāng)且僅當(dāng)x=y時(shí),取“=”號(hào)).(2)x+
2024-08-16 03:53
【摘要】第9課基本不等式◇考綱解讀①了解基本不等式的證明過(guò)程.②會(huì)用基本不等式解決簡(jiǎn)單的最大(?。┲祮?wèn)題.◇知識(shí)梳理1.常用的基本不等式和重要的不等式①當(dāng)且僅當(dāng),②③,則,④2.最值定理:設(shè)①如積②如積運(yùn)用最值定理求最值的三要素:_____________________________________
2025-06-29 19:23
【摘要】基本不等式說(shuō)課稿 基本不等式是主要應(yīng)用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說(shuō)課稿,希望對(duì)大家有幫助! 基本不等式說(shuō)課稿1尊敬的各位考官大家好,我是今天的X號(hào)考生,今天我說(shuō)課...
2024-12-07 02:50
【摘要】......《不等式》的說(shuō)課稿各位領(lǐng)導(dǎo)、老師們大家好:今天我說(shuō)課的內(nèi)容是北師版數(shù)學(xué)高中教材必修五第三章第一二三節(jié),我將從八個(gè)方面(教材、學(xué)情、教學(xué)模式、教學(xué)設(shè)計(jì)、板書(shū)、評(píng)價(jià)、開(kāi)發(fā)、得失,出示ppt)說(shuō)我對(duì)此課的思考和
2025-04-20 00:22
【摘要】第一篇:基本不等式教案 基本不等式 【教學(xué)目標(biāo)】 1、掌握基本不等式,能正確應(yīng)用基本不等式的方法解決最值問(wèn)題 2、用易錯(cuò)問(wèn)題引入要研究的課題,通過(guò)實(shí)踐讓同學(xué)對(duì)基本不等式應(yīng)用的二個(gè)條件有進(jìn)一步的...
2024-10-28 11:37
【摘要】基本不等式學(xué)習(xí)目標(biāo)?學(xué)習(xí)目標(biāo):理解一元二次不等式的概念及其與二次函數(shù)、一元二次方程的關(guān)系。初步樹(shù)立“數(shù)形結(jié)合次函數(shù)、一元二次方程的關(guān)系。?學(xué)法指導(dǎo):發(fā)現(xiàn)、討論法;數(shù)形結(jié)合?!钡挠^念。掌握一元二次不等式的解法及步驟。?學(xué)習(xí)重點(diǎn)、難點(diǎn):一元二次不等式、二次函數(shù)、一元二次方程的關(guān)系;一元二次不等式的解法及
2024-11-27 11:40
【摘要】2abab??§:ICM2022會(huì)標(biāo)趙爽:弦圖ADBCEFGHab22ab?不等式:一般地,對(duì)于任意實(shí)數(shù)a、b,我們有當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。222abab??新授:ABCDE(FGH)ab基本不等式:(
2024-08-15 15:14
【摘要】基本不等式【考綱要求】,理解基本不等式的幾何意義,并掌握定理中的不等號(hào)“≥”取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;(?。┲祮?wèn)題.;能夠解決一些簡(jiǎn)單的實(shí)際問(wèn)題【知識(shí)網(wǎng)絡(luò)】基本不等式重要不等式最大(?。┲祮?wèn)題基本不等式基本不等式的應(yīng)用【考點(diǎn)梳理】考點(diǎn)一:重要不等式及幾何意義1.重要不等式:如果,那么(當(dāng)且僅當(dāng)時(shí)取等號(hào)“=”).2.基
2024-08-16 04:42
【摘要】......基本不等式及應(yīng)用一、考綱要求:.2.會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問(wèn)題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號(hào)成立的條件≤a0,
2025-05-16 23:12