【摘要】Chapter2(2)偏導數(shù)與高階偏導數(shù)返回一.偏導數(shù)二.高階偏導數(shù)三.偏導數(shù)在經(jīng)濟分析中的應用偏導數(shù)與高階偏導數(shù)目的要求:一.理解多元函數(shù)的偏導數(shù)的概念二.熟練掌握求一階和二階偏導數(shù)的方法重點:一.一階、二階偏導數(shù)計算三.熟練掌握偏導數(shù)
2025-01-17 07:37
【摘要】第二節(jié)偏導數(shù)與高階偏導數(shù)?一、偏導數(shù)的定義及其計算法?二、高階偏導數(shù)定義設函數(shù)),(yxfz?在點),(00yx的某一鄰域內(nèi)有定義,當y固定在0y而x在0x處有增量x?時,相應地函數(shù)有增量),(),(0000yxfyxxf?
2025-05-10 22:29
【摘要】第二節(jié)偏導數(shù)與高階偏導數(shù)),(),,(,,),(),(),(),(limlim),(),(,,)1(0000),(),(0000000000000000000yxfyxzxzxfxyxyxfxyxfyxxfxfyxfyxxffxxxyyxxyxyxxx
2025-05-15 17:31
【摘要】目錄上頁下頁返回結束第二節(jié)一、偏導數(shù)概念及其計算二、高階偏導數(shù)偏導數(shù)第九章目錄上頁下頁返回結束一、偏導數(shù)定義及其計算法引例:研究弦在點x0處的振動速度與加速度,就是),(txu0xOxu中的
2025-01-23 00:57
【摘要】高等院校非數(shù)學類本科數(shù)學課程大學數(shù)學(三)多元微積分學第一章多元函數(shù)微分學曾金平教案編寫:劉楚中曾金平電子制作:劉楚中第一章多元函數(shù)微分學本章學習要求:1.理解多元函數(shù)的概念。熟悉多元函數(shù)的“點函數(shù)”表示法。2.知道二元函數(shù)的極限、連續(xù)性等概念,以及有界閉域上連續(xù)函數(shù)的性質。
2025-05-10 12:10
【摘要】第五節(jié)高階偏導數(shù)本節(jié)主要講兩個問題:一、什么是高階偏導數(shù)二、在什么條件下混合偏導數(shù)相等多元函數(shù)的高階偏導數(shù)與一元函數(shù)的高階導數(shù)類似:一般情況下,函數(shù)的偏導數(shù)還是的函數(shù),如果的偏導數(shù)還存在,則稱它們的偏導數(shù)為的二階偏導數(shù).即:函數(shù)一階偏導數(shù)的偏導數(shù),稱為原來函數(shù)的二階偏導數(shù).函數(shù)二階偏導數(shù)
2025-05-03 18:09
【摘要】1高階導數(shù)的定義萊布尼茨(Leibniz)公式小結思考題作業(yè)§高階導數(shù)第二章導數(shù)與微分幾個基本初等函數(shù)的n階導數(shù)2問題:變速直線運動的加速度.),(tss?設)()(tstv??則瞬時速度為是加速度a???)(ta定義)()(xfxf?的導數(shù)如果函數(shù)
2025-01-20 09:00
【摘要】河海大學理學院《高等數(shù)學》高等數(shù)學(上)河海大學理學院《高等數(shù)學》第二章導數(shù)與微分高等數(shù)學(上)河海大學理學院《高等數(shù)學》問題:變速直線運動的加速度.),(tfs?設)()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftv
【摘要】機動目錄上頁下頁返回結束1/28四、小結思考題一、偏導數(shù)三、高階偏導數(shù)二、全微分機動目錄上頁下頁返回結束2/28一、偏導數(shù)【定義】設),(yxfz?在點),(00yx的某一鄰域內(nèi)有定義,當y固定在0y而x在0x處有增量x?
2025-05-09 03:15
【摘要】二、高階導數(shù)的運算法則第三節(jié)一、高階導數(shù)的概念機動目錄上頁下頁返回結束高階導數(shù)與隱函數(shù)的導數(shù)第二章三、隱函數(shù)求導一、高階導數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運動機動目錄上頁下頁返回
2025-05-16 21:33
【摘要】1高階導數(shù)第三節(jié)一、高階導數(shù)的定義二、高階導數(shù)求法舉例三、小結及作業(yè)2一、高階導數(shù)的定義問題:變速直線運動的加速度.),(tss?設).()(tstv??則瞬時速度為的變化率,對時間是速度因為加速度tva定義.)())((,)()(lim))((,)()(處的二階導數(shù)在點為則稱存在即處可
【摘要】二、高階導數(shù)的運算法則第三節(jié)一、高階導數(shù)的概念機動目錄上頁下頁返回結束高階導數(shù)第二章一、高階導數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運動機動目錄上頁下頁返回結束定義.若函數(shù)
2025-05-08 12:11
【摘要】§3.高階導數(shù)函數(shù)f(x)的導數(shù)f'(x)又稱為f(x)的一階導數(shù)(導函數(shù)),仍可導,若)(xf?存在,即xxfxxfx????????)()(lim0則稱其為y=f(x)的二階導數(shù),記為,)(,xfy?????22xdyd或.)(xd
2025-05-08 08:14
【摘要】設y=f(x),若y=f(x)可導,則f'(x)是x的函數(shù).若f'(x)仍可導,則可求f'(x)的導數(shù).記作(f'(x))'=f''(x).稱為f(x)的二階導數(shù).若f''(x)仍可導,則又可求f''(x)的導數(shù),….
2025-05-08 12:38
【摘要】§二元函數(shù)偏導數(shù)的應用?在幾何上的應用?二元函數(shù)極值的求法?小結?思考與練習的參數(shù)設空間曲線L方程為????????)()()(tztytx???ozyxM??M?為零。的導數(shù)存在,且不同時數(shù)對這里假定上式的三個函t