【總結(jié)】1§?一、多元函數(shù)的極值與最值?二、條件極值?三、最小二乘法*2二元函數(shù)極值的定義?設(shè)函數(shù)z=f(x,y)在點(x0,y0)的某鄰域內(nèi)有定義,對于該鄰域內(nèi)異于(x0,y0)的點(x,y):若滿足不等式f(x,y)f(x0,y0),則稱函數(shù)在(x0,y0)有極大值;若滿足不等式f(x,y)
2025-01-08 13:30
【總結(jié)】第四節(jié)高階導數(shù)一、高階導數(shù)的定義二、高階導數(shù)求法舉例三、由參數(shù)方程確定的函數(shù)的二階導數(shù)一、高階導數(shù)的定義問題:變速直線運動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))
2025-01-19 13:44
【總結(jié)】§高階導數(shù).),()(),()(它的可導性點的函數(shù),仍可以考察內(nèi)的作為內(nèi)可導,則它的導函數(shù)在設(shè)xbaxfbaxfy??,)()(,)(,)(0000點的二階導數(shù)在點的導數(shù)為在且稱點二階可導在則稱點可導在若xxfyxxfyxxfyxxfy????????.)dd,dd,()(
2025-04-29 02:10
【總結(jié)】l對一元函數(shù):導數(shù)描述了函數(shù)在處的瞬時變化率,它的幾何意義就是函數(shù)曲線上點處的切線的斜率。l對于多元函數(shù),我們同樣感興趣它在某處的瞬時變化率問題,以二元函數(shù)為例,我們分別討論:相對于以及相對于的瞬時變化率——偏導數(shù)偏導數(shù)的定義偏導數(shù)的定義設(shè)函數(shù)在點的某一鄰域
2025-04-28 23:20
【總結(jié)】1/27一、空間曲線的切線與法平面二、曲面的切平面與法線第七節(jié)偏導數(shù)的幾何應(yīng)用三、小結(jié)四、作業(yè)2/27設(shè)空間曲線的方程)1()()()(????????tzztyytxx(1)式中的三個函數(shù)均可導.M?.),,(0000tttzzyyxx
2025-05-06 03:16
【總結(jié)】March2022RevisedFeb,2022偏導數(shù)PartialDerivativesMarch2022RevisedFeb,2022一、偏導數(shù)的定義與計算March2022RevisedFeb,2022二元函數(shù)的偏導數(shù)0000(,)(,)xzfxxyfxy?
2025-01-19 14:35
【總結(jié)】返回后頁前頁§1可微性與偏導數(shù)本節(jié)首先討論二元函數(shù)的可微性,這是多元函數(shù)微分學最基本的概念.然后給出對單個自變量的變化率,即偏導數(shù).偏導數(shù)無論在理論上或在應(yīng)用上都起著關(guān)鍵性的作用.四、可微性的幾何意義及應(yīng)用返回一、可微性與全微分二、偏導數(shù)三、可微性條件返回
2025-07-25 02:49
【總結(jié)】§高階導數(shù)三、參數(shù)方程表示函數(shù)的高階導數(shù)一、高階導數(shù)的定義二、高階導數(shù)求法舉例四、小結(jié)一、高階導數(shù)的定義問題:變速直線運動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義000000
2025-01-15 17:38
【總結(jié)】第六節(jié)高階導數(shù)一、問題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導數(shù)?(2)若有高階導數(shù),其定義和求法是否與實變函數(shù)相同?回答:(1)解析函數(shù)有各高階導數(shù).(2)高階導數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示,這與實變函
2025-01-20 03:38
【總結(jié)】高等數(shù)學第二章導數(shù)與微分第二章第二章導數(shù)與微分導數(shù)與微分第二節(jié)第二節(jié)求導數(shù)的一般方法求導數(shù)的一般方法主要內(nèi)容?一、基本初等函數(shù)的導數(shù)?二、函數(shù)四則運算求導法則?三、復合函數(shù)求導法則?四、隱函數(shù)求導法則高等數(shù)學一、常數(shù)和基本初等函數(shù)的導數(shù)????????????????)(csc
2025-04-29 13:01
【總結(jié)】(AdvancedMathematics)?CSMyzx0?P導數(shù)與微分2習題課(Ⅲ)高階導數(shù)與微分導數(shù)與微分3??????????????????????導數(shù)定義幾何意義可導性與連續(xù)性的
2025-05-05 22:04
【總結(jié)】第八章習題課機動目錄上頁下頁返回結(jié)束一、基本概念二、多元函數(shù)微分法三、多元函數(shù)微分法的應(yīng)用多元函數(shù)微分法一、基本概念連續(xù)性偏導數(shù)存在方向?qū)?shù)存在可微性1.多元函數(shù)的定義、極限、連續(xù)?定義域及對應(yīng)規(guī)律?判斷極限不存在及求
2025-08-05 18:11
【總結(jié)】§偏導數(shù)一、偏導數(shù)的定義及其計算法二、高階偏導數(shù)一、偏導數(shù)的定義及其計算法類似地,可定義函數(shù)z?f(x,y)在點(x0,y0)處對y的偏導數(shù).?偏導數(shù)的定義設(shè)函數(shù)z?f(x,y)在點(x0,y0)的某一鄰域內(nèi)有定義,若極限xyxfyxxfx?
2025-07-26 18:29
【總結(jié)】第四節(jié)高階導數(shù)引例:變速直線運動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導數(shù)在點為函數(shù)則稱存在即處可導在點的導數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-21 04:25
【總結(jié)】二、高階導數(shù)的運算法則第三節(jié)一、高階導數(shù)的概念機動目錄上頁下頁返回結(jié)束高階導數(shù)第二章一、高階導數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運動機動目錄上頁下頁返回結(jié)束定義.若函數(shù)
2025-04-29 01:58