【摘要】立足教育開創(chuàng)未來·高中總復習(第一輪)·理科數(shù)學·全國版1第六章不等式第講立足教育開創(chuàng)未來·高中總復習(第一輪)·理科數(shù)學·全國版2考點搜索●利用基本不等式證明不等式●運用重要不等式求最值
2024-08-24 14:47
【摘要】·高中總復習(第1輪)·理科數(shù)學·全國版1第講3含絕對值的不等式和一元二次不等式第一章集合與簡易邏輯·高中總復習(第1輪)·理科數(shù)學·全國版2考點搜索●含絕對值的不等式的解法●一元二次不等
2024-08-24 14:49
【摘要】立足教育開創(chuàng)未來·高中總復習(第一輪)·理科數(shù)學·全國版1第六章不等式第講(第一課時)立足教育開創(chuàng)未來·高中總復習(第一輪)·理科數(shù)學·全國版2考點搜索●比較法●綜合法●分析法
【摘要】立足教育開創(chuàng)未來·高中總復習(第一輪)·理科數(shù)學·全國版1第六章不等式第講立足教育開創(chuàng)未來·高中總復習(第一輪)·理科數(shù)學·全國版2考點搜索●應用均值不等式求最值●應用不等式求范圍●不等式
2024-09-02 08:58
【摘要】立足教育開創(chuàng)未來·高中總復習(第一輪)·理科數(shù)學·全國版1第六章不等式第講(第一課時)立足教育開創(chuàng)未來·高中總復習(第一輪)·理科數(shù)學·全國版2考點搜索●一元一次不等式的解法●一元二次不等式的
【摘要】歡迎交流唯一QQ1294383109希望大家互相交流不等式一、選擇題1.“13x12”是“不等式|x-1|1成立”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件解析:選A.∵不等式|x-1|1的解集為(0,2),
2024-08-26 20:08
【摘要】【3年高考2年模擬】第3章不等式第一部分三年高考薈萃高考試題分類解析一、選擇題1.(2020天津文)設變量,xy滿足約束條件?????????????01042022xyxyx,則目標函數(shù)32zxy??的最小值為()A.5?B.4?C.2?D.3
2024-08-24 14:54
【摘要】新課標人教版課件系列《高中數(shù)學》必修5《基本不等式-均值不等式》審校:王偉教學目標?推導并掌握兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應用。?教學重點:?推導并掌握兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)這個重要定
2024-11-13 03:52
【摘要】第一篇:不等式證明,均值不等式 1、設a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【摘要】第3課時均值不等式1.均值不等式基礎知識梳理2.常用的幾個重要不等式(1)a2+b2≥(a,b∈R);(2)ab(a+b2)2(a,b∈R);(3)a2+b22(a+b2
2024-08-04 03:54
2024-08-15 10:01
2024-08-15 09:13
【摘要】第一篇:2013高考數(shù)學均值不等式專題 均值不等式歸納總結 ab£(a+b 2)£2a+b 222(當且僅當a=b時等號成立) (1)當兩個正數(shù)的積為定值時,可以求它們的和的最小值,當兩個正...
2024-10-27 07:47
【摘要】課堂例題設計應注重“低起點、高觀點、高目標”——均值不等式復習課的例題設計XX省XX中學【理論指導】:“低起點、高觀點、高目標”的指導方針?!暗推瘘c”要求:從基礎知識入手,即從能反映該學科領域最基本、最核心
2024-08-14 19:30
【摘要】......基本不等式習專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”)(4)當且僅當
2025-05-16 23:45