【總結(jié)】線性代數(shù)綜合練習(xí)題(八)參考答案一、填空題1.??????????24205100010,2.無關(guān),3.11???k,4.3?k,5.系數(shù)矩陣的秩nAR?)(;系數(shù)矩陣A的秩等于增廣矩陣),(?AB?的秩。二、選擇題1.B2.A4.B
2025-08-26 08:52
【總結(jié)】線性代數(shù)綜合練習(xí)題(四)參考答案一、選擇題1.B2.C3.A4.C5.B6.D二、填空題1.???????????215152525100002.93.44.15.12?a
2025-01-09 10:37
【總結(jié)】習(xí)題設(shè)行列式,則第四行各元素余子式之和的值為.2235007022220403???D111100
2025-01-17 13:25
【總結(jié)】線性代數(shù)綜合練習(xí)題(九)參考答案一、選擇題1.B2.D3.A4.B5.D二、填空題(每空格4分,共28分)1.100,2.??????????000000000,3.2,4.3,
2025-08-26 11:20
【總結(jié)】線性代數(shù)綜合練習(xí)題(七)參考答案一、選擇題1.D2.B3.C4.A5.D二、填空題1.02.??????????0000002131413.3,??????????13121
【總結(jié)】第一篇:線性代數(shù)試題及答案 04184線性代數(shù)(經(jīng)管類)一、二、單選題 1、B:-1A:-3C:1D:3做題結(jié)果:A參考答案:D 2、B:dA:abcdC:6D:0做題結(jié)果:A參考答案:D 3...
2024-11-19 03:43
【總結(jié)】1..2n階行列式P11習(xí)題一則第二章第一節(jié)矩陣的概念第二節(jié)矩陣的運(yùn)算第三節(jié)逆矩陣第五節(jié)矩陣的初等變換第六節(jié)矩陣的秩綜合訓(xùn)練第三章第3章矩陣Error!Ref
2025-08-18 16:50
【總結(jié)】第一篇:線性代數(shù)試題及答案 線性代數(shù)習(xí)題和答案 第一部分 選擇題 (共28分) 一、單項(xiàng)選擇題(本大題共14小題,每小題2分,共28分)在每小題列出的四個(gè)選項(xiàng)中只有一個(gè)是符合題目要求的,請(qǐng)將...
2024-10-15 12:35
【總結(jié)】線 性 代 數(shù) 12級(jí)物聯(lián)網(wǎng)班 一、填空 1. ,則 . 2. 設(shè)D為一個(gè)三階行列式,第三列元素分別為-2,3,1,其余子式分別為9,6, 24,則 _______. 3. ...
2024-11-09 12:06
【總結(jié)】-1-(試卷一)一、填空題(本題總計(jì)20分,每小題2分)1.排列7623451的逆序數(shù)是_______。2.若122211211?aaaa,則?160030322211211aaaa3.已知n階矩陣A、B和C滿足EABC?,其中E為n階
2025-01-09 10:38
【總結(jié)】《線性代數(shù)》同步練習(xí)冊(cè)班級(jí)姓名學(xué)號(hào)1第一章矩陣§矩陣的概念與運(yùn)算:361622411?????????
2025-01-07 18:04
【總結(jié)】LSF,5/9/2007線性代數(shù)魏福義,黃燕蘋主編?北京:中國(guó)農(nóng)業(yè)出版社,2003.2(ISBN7-109-08058-7)習(xí)題解(缺習(xí)題六題解)06學(xué)年第二學(xué)期復(fù)習(xí)題:習(xí)題一:4,5,6,7(4),10,11,13,14,15(1),16(3)(4),18,20,21,22,23,24,25,26,27
2025-03-25 07:05
【總結(jié)】《線性代數(shù)》公選課復(fù)習(xí)題一、填空題1.行列式第二列元素的代數(shù)余子式分別是 , , .2..3.已知矩陣,則= ?。矗O(shè),則 .5.已知,則 ?。叮阎仃?,若齊次方程組存在非零解,則 ?。罚 。福簦怠粒淳仃嘇的每一行元素之和等于零,且,則方程組AX=0的一個(gè)基礎(chǔ)解系為 ?。梗绻驱R次線
2025-08-04 13:07
【總結(jié)】第六章二次型1.設(shè)方陣與合同,與合同,證明與合同.證:因?yàn)榕c合同,所以存在可逆矩,使,因?yàn)榕c合同,所以存在可逆矩,使.令,則可逆,于是有即與合同.2.設(shè)對(duì)稱,與合同,則對(duì)稱證:由對(duì)稱,故.因與合同,所以存在可逆矩陣,使,于是即為對(duì)稱矩陣.3.設(shè)A是n階正定矩陣,B為n階實(shí)對(duì)稱矩陣,
2025-06-28 22:10
【總結(jié)】利用范德蒙行列式計(jì)算例計(jì)算利用范德蒙行列式計(jì)算行列式,應(yīng)根據(jù)范德蒙行列式的特點(diǎn),將所給行列式化為范德蒙行列式,然后根據(jù)范德蒙行列式計(jì)算出結(jié)果。.333222111222nnnDnnnn?????????,于是得到增至冪次數(shù)便從則方若提取各行的公因子,遞升至而是由
2025-04-30 05:22