【導讀】在S區(qū)有一個集貿(mào)市場P,它建在公路與鐵路所成角的平分線上,要從P點建兩條路,問題1:怎樣修建道路最短?問題2:往哪條路走更近呢?+BD+BE=CD+BD+BE=BC+BE=AE+BE=7cm.解:∵BD平分∠ABC,DE⊥AB,DF⊥BF,∴DE=DF.∵S△ABC=S△BCD+S△ABD=12BC·DF. +12AB·DE=12·DE=12×30×=36.。Rt△BPE和Rt△BPD中,2BD,BC=CD+BD,AB=BE-AE,∴AE=CD.∵PE⊥BE,PD⊥BC,∴∠PEA=∠PDC. ∴△PEA≌△PDC,∴∠PCD=∠PAE.∵∠BAP+∠EAP=180°,∴∠BAP+。=∠PNC=90°.在Rt△PBM與Rt△PCN中,∵PB=PC,BM=CN,∴Rt△PBM≌Rt△。PCN.∴PM=PN.∴點P在∠BAC的平分線上,即∠1=∠2.=∠EAC,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△BAE和△DAC中,∴△BAE≌△DAC,∴BE=DC,S△BAE=S△DAC.∵AM⊥DC,AN⊥BE,∴12BE·AN. =12DC·AM,∴AN=AM,∴PA平分∠DPE,∴∠DPA=∠∵∠DPA=∠CPF,∠。EPA=∠BPF,∴∠BPF=∠CPF.