【導(dǎo)讀】、通項(xiàng)公式、前n項(xiàng)和公式的性質(zhì).式的相關(guān)性質(zhì)及其應(yīng)用,這些性質(zhì)在數(shù)列中地位重要.若m+n=p+q,則,特別地,若m+n=2p,則.②若{an}為等比數(shù)列,公比為q,則{a2n}也是等比數(shù)列,公比為.前n項(xiàng)和公式法:若Sn=k·qn+,則{an}是等比數(shù)。當(dāng)a1>0,q>1時(shí),等比數(shù)列{an}是遞數(shù)列;{an}的前n項(xiàng)和為Sn,若S2=6,S4=30,則S6=.{an}的通項(xiàng)an=2·3n,求由其奇數(shù)項(xiàng)所組成的數(shù)列的前n項(xiàng)和Sn.記dn=an+1-an,求證:{dn}是等比數(shù)列.在等比數(shù)列{an}中,已知Sn=48,S2n=60,求S3n.已知函數(shù)f=-x2+7x,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn均在函數(shù)y=f的。{an}共有2n+1項(xiàng),奇數(shù)項(xiàng)之積為100,偶數(shù)項(xiàng)之積為120,則an+1=.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若=3,則等于().問題1:qn-mam·an=ap·aqam·an=qk①q②q2③q2④。由a2021=3S2021+2021與a2021=3S2021+2021相減得,a2021-a2021=3a2021,即q=4,故選A.列,∵S2=6,S4-S2=24,∴S6-S4==96,∴S6=S4+96=126.∴S2,S4-S2,S6-S4也為等比數(shù)列,(法二)∵S2=7,S6=91,∴q≠1.等比數(shù)列中項(xiàng)數(shù)相等的連續(xù)項(xiàng)的和若不為零時(shí),則連續(xù)項(xiàng)的和仍成等比數(shù)列.故數(shù)列{dn}是以為首項(xiàng),為公比的等比數(shù)列.