【導(dǎo)讀】3)截長(zhǎng)法與補(bǔ)短法,具體做法是在某條線段上截取一條線段與特定線段相等,是邊長(zhǎng)為3的等邊三角形,BDC?是等腰三角形,且0120BDC??
【總結(jié)】全等三角形問(wèn)題中常見的輔助線的作法(有答案)總論:全等三角形問(wèn)題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個(gè)角之間的相等【三角形輔助線做法】圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。三角形中兩中點(diǎn),連
2025-06-16 21:30
【總結(jié)】全等三角形中輔助線的添加:全等三角形的常見輔助線的添加方法、基本圖形的性質(zhì)的掌握及熟練應(yīng)用。二.知識(shí)要點(diǎn):1、添加輔助線的方法和語(yǔ)言表述(1)作線段:連接……;(2)作平行線:過(guò)點(diǎn)……作……∥……;(3)作垂線(作高):過(guò)點(diǎn)……作……⊥……,垂足為……;(4)作中線:取……中點(diǎn)……,連接……;(5)延長(zhǎng)并截取線段:延長(zhǎng)……使……等于……;(6)截取等長(zhǎng)線段
2025-06-19 22:20
【總結(jié)】......全等三角形中做輔助線技巧要點(diǎn)大匯總口訣:三角形圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連
2025-06-25 04:30
【總結(jié)】幾何證明-常用輔助線(一)中線倍長(zhǎng)法:例1、求證:三角形一邊上的中線小于其他兩邊和的一半。已知:如圖,△ABC中,AD是BC邊上的中線,求證:AD﹤(AB+AC)分析:要證明AD﹤(AB+AC),就是證明AB+AC2AD,也就是證明兩條線段之和大于第三條線段,而我們只能用“三角形兩邊之和大于第三邊”,但題中的三條線段
2025-06-25 21:39
【總結(jié)】全等三角形證明方法中輔助線做法1、截長(zhǎng)補(bǔ)短通過(guò)添加輔助線利用截長(zhǎng)補(bǔ)短,從而達(dá)到改變線段之間的長(zhǎng)短,達(dá)到構(gòu)造全等三角形的條件1.如圖1,在△ABC中,∠ABC=60°,AD、CE分別平分∠BAC、∠ACB.求證:AC=AE+CD. 分析:要證AC=AE+CD,AE、CD不在同一直線上.故在AC上截取AF=AE,則只要證明
2025-03-24 07:41
【總結(jié)】全等三角形作輔助線經(jīng)典例題常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對(duì)折”.2)遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對(duì)折”,所考知識(shí)點(diǎn)
2025-03-24 07:38
【總結(jié)】全等三角形問(wèn)題中常見的輔助線的作法常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對(duì)折”.2)遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對(duì)折”
2025-03-26 04:26
【總結(jié)】全等三角形問(wèn)題中常見的輔助線的作法(含答案)總論:全等三角形問(wèn)題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個(gè)角之間的相等【三角形輔助線做法】圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。三角形中兩中點(diǎn),連
2025-03-24 07:40
【總結(jié)】龍文教育中小學(xué)1對(duì)1課外輔導(dǎo)專家全等三角形問(wèn)題中常見的輔助線的作法巧添輔助線一——倍長(zhǎng)中線【夯實(shí)基礎(chǔ)】例:中,AD是的平分線,且BD=CD,求證AB=AC方法1:作DE⊥AB于E,作DF⊥AC于F,證明二次全等方法2:輔助線同上,利用面積方法
2025-04-16 23:10
【總結(jié)】.,....南京書立行教育數(shù)學(xué)課教案課題輔助線的作法1——截長(zhǎng)補(bǔ)短組名教師徐老師時(shí)間2018班級(jí)一對(duì)多年級(jí)初二課型復(fù)習(xí)課教學(xué)目標(biāo)掌握全等三角形的判定方法:SAS、
2025-04-07 05:01
2025-06-19 22:58
【總結(jié)】三角形中的常用輔助線課程解讀一、學(xué)習(xí)目標(biāo):歸納、掌握三角形中的常見輔助線?二、重點(diǎn)、難點(diǎn):1、全等三角形的常見輔助線的添加方法。2、掌握全等三角形的輔助線的添加方法并提高解決實(shí)際問(wèn)題的能力。?????三、考點(diǎn)分析:全等三角形是初中數(shù)學(xué)中的重要內(nèi)容之一,是今后學(xué)習(xí)其他知識(shí)的基礎(chǔ)。判斷三角形全等的公理
2025-06-19 20:37
【總結(jié)】專業(yè)資料分享金蘋果教育個(gè)性化教案:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形,叫做相似三角形。:用符號(hào)“∽”表示,讀作“相似于”。:相似三角形的對(duì)應(yīng)邊的比叫做相似比。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所截成的三角形與原三角形相似。:(1)三
2025-05-16 06:57
【總結(jié)】全等三角形問(wèn)題中常見的輔助線的作法總論:全等三角形問(wèn)題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個(gè)角之間的相等“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題:倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形:遇到有二條線段長(zhǎng)之和等于第三條線段的長(zhǎng),:有一個(gè)角為60度或120度的把該角添線后構(gòu)成等邊三角形、60度的作垂
2025-06-19 22:49