【總結(jié)】.,....南京書立行教育數(shù)學(xué)課教案課題輔助線的作法1——截長(zhǎng)補(bǔ)短組名教師徐老師時(shí)間2018班級(jí)一對(duì)多年級(jí)初二課型復(fù)習(xí)課教學(xué)目標(biāo)掌握全等三角形的判定方法:SAS、
2025-04-07 05:01
【總結(jié)】三角形中的常用輔助線課程解讀一、學(xué)習(xí)目標(biāo):歸納、掌握三角形中的常見輔助線?二、重點(diǎn)、難點(diǎn):1、全等三角形的常見輔助線的添加方法。2、掌握全等三角形的輔助線的添加方法并提高解決實(shí)際問題的能力。?????三、考點(diǎn)分析:全等三角形是初中數(shù)學(xué)中的重要內(nèi)容之一,是今后學(xué)習(xí)其他知識(shí)的基礎(chǔ)。判斷三角形全等的公理
2025-04-16 23:10
【總結(jié)】全等三角形幾種常見輔助線精典題型一、截長(zhǎng)補(bǔ)短1、已知中,,、分別平分和,、交于點(diǎn),試判斷、、的數(shù)量關(guān)系,并加以證明. 2、如圖,點(diǎn)為正三角形的邊所在直線上的任意一點(diǎn)(點(diǎn)除外),作,射線與外角的平分線交于點(diǎn),與有怎樣的數(shù)量關(guān)系?3、如圖,AD⊥AB,CB⊥AB,DM=CM=,AD=,CB=,∠AMD=75°,∠
2025-03-24 07:39
【總結(jié)】第1頁(yè)共3頁(yè)八年級(jí)數(shù)學(xué)全等三角形輔助線添加之截長(zhǎng)補(bǔ)短(全等三角形)拔高練習(xí)試卷簡(jiǎn)介:本講測(cè)試題共兩個(gè)大題,第一題是證明題,共7個(gè)小題,每小題10分;第二題解答題,2個(gè)小題,每小題15分。學(xué)習(xí)建議:本講內(nèi)容是三角形全等的判定——輔助線添加之截長(zhǎng)補(bǔ)短,其中通過(guò)截長(zhǎng)補(bǔ)短來(lái)添加輔助線是重點(diǎn),也是難點(diǎn)。希望
2025-08-11 22:00
【總結(jié)】全等三角形輔助線系列之一與角平分線有關(guān)的輔助線作法大全一、角平分線類輔助線作法角平分線具有兩條性質(zhì):a、對(duì)稱性;b、角平分線上的點(diǎn)到角兩邊的距離相等.對(duì)于有角平分線的輔助線的作法,一般有以下四種.1、角分線上點(diǎn)向角兩邊作垂線構(gòu)全等:過(guò)角平分線上一點(diǎn)向角兩邊作垂線,利用角平分線上的點(diǎn)到兩邊距離相等的性質(zhì)來(lái)證明問題;2、截取構(gòu)全等利用對(duì)稱性,在角的兩邊截取相等的線段,
2025-07-24 05:40
【總結(jié)】構(gòu)造等腰三角形解題的輔助線做法呂海艷等腰三角形是一種特殊的三角形,常與全等三角形的相關(guān)知識(shí)結(jié)合在一起考查。在許多幾何問題中,通常需要構(gòu)造等腰三角形才能使問題獲解。那么如何構(gòu)造等腰三角形呢?一般有以下四種方法:(1)依據(jù)平行線構(gòu)造等腰三角形;(2)依據(jù)倍角關(guān)系構(gòu)造等腰三角形;(3)依據(jù)角平分線+垂線構(gòu)造等腰三角形;(4)依據(jù)120°角或60°角,常補(bǔ)形構(gòu)
2025-03-25 04:37
【總結(jié)】全等三角形輔助線系列之三與截長(zhǎng)補(bǔ)短有關(guān)的輔助線作法大全一、截長(zhǎng)補(bǔ)短法構(gòu)造全等三角形截長(zhǎng)補(bǔ)短法,是初中數(shù)學(xué)幾何題中一種輔助線的添加方法,也是把幾何題化難為易的一種思想.所謂“截長(zhǎng)”,就是將三者中最長(zhǎng)的那條線段一分為二,使其中的一條線段等于已知的兩條較短線段中的一條,然后證明其中的另一段與已知的另一條線段相等;所謂“補(bǔ)短”,就是將一個(gè)已知的較短的線段延長(zhǎng)至與另一個(gè)已知的較短的長(zhǎng)度相等
【總結(jié)】1相似三角形相似三角形的概念2在相似多邊形中,最為簡(jiǎn)單的就是相似三角形﹡相似三角形的定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相似。3∠A=∠A′,∠B=∠B′,∠C=∠C′ACCACBBCBAAB????????△ABC∽△
2024-10-11 14:31
【總結(jié)】全等三角形及其輔助線作法常見輔助線的作法有以下幾種:1)遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”(或構(gòu)造平行線的X型全等).2)遇到角平分線,一是可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,二是在角的兩邊上截取相同的線段,構(gòu)成全等。利用的思維模式是三角形全等變換中的“對(duì)折”,也是運(yùn)用了角的對(duì)稱性。3)截長(zhǎng)法與
2025-06-23 21:59
【總結(jié)】等腰三角形常用輔助線專題練習(xí)(含答案):已知,點(diǎn)D、E在三角形ABC的邊BC上,AB=AC,AD=AE,求證:BD=CE。證明:作AF⊥BC,垂足為F,則AF⊥DE?!逜B=AC,AD=AE又∵AF⊥BC,AF⊥DE,∴BF=CF,DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合)。∴BD=CE.,在三角形ABC中,AB=AC,AF平行B
2025-06-25 05:16
【總結(jié)】(1)“取長(zhǎng)補(bǔ)短法“證線段的和差關(guān)系1、如圖,AC∥BD,EA,EB分別平分∠CAB,∠DBA,CD過(guò)點(diǎn)E,求證;AB=AC+BD_E_C_D_B_A2:如圖,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于點(diǎn)D,CE垂直于BD,交BD的延長(zhǎng)線于點(diǎn)E。求證:BD=2CE。
2025-04-04 03:26
【總結(jié)】2016專題:《全等三角形證明》1.已知:D是AB中點(diǎn),∠ACB=90°,求證:DABC2.已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點(diǎn),求證:∠1=∠2ABCDEF213.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求證:AE=AD+BE4.如圖,四邊形ABCD中
2025-03-24 07:41
【總結(jié)】三角形中做輔助線的技巧口訣:三角形圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線段和差及倍半,延長(zhǎng)縮短可試驗(yàn)。線段和差不等式,移到同一三角去。三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長(zhǎng)中線等中線。1、由角平分線想到的輔助線
2025-03-24 12:31
【總結(jié)】全等三角形問題中常見的輔助線——截長(zhǎng)補(bǔ)短法例1、如圖,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC例2、如圖,AD∥BC,AE,BE分別平分∠DAB,∠CBA,CD過(guò)點(diǎn)E,求證;AB=AD+BC例3、如圖,已知在內(nèi),,,P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP
【總結(jié)】精品資源相似三角形題目集錦1.操作如圖,在正方形ABCD中,P是CD上一動(dòng)點(diǎn)(與C、D不重合).使得三角形的直角頂點(diǎn)與P點(diǎn)重合,并且一條直角邊始終經(jīng)過(guò)點(diǎn)B,另一直角邊與正方形的某一邊所在直線交于點(diǎn)E.探究(1)觀察操作猜想哪一個(gè)三角形也△.(2)當(dāng)點(diǎn)P位于CD的中點(diǎn)時(shí),你得到的三角形與△BPC的周長(zhǎng)比是多少?
2025-08-04 03:40