【總結(jié)】DCBAEDCBA常見輔助線的作法有以下幾種:1)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形。2)遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,構(gòu)造全等三角形。3)截長法與補短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全
2024-12-08 00:46
【總結(jié)】全等三角形復(fù)習(xí)小結(jié):判定兩個三角形全等必須具備三個條件:SAS—兩邊和它們的夾角對應(yīng)相等的兩個三角形全等ASA—兩角和它們的夾邊對應(yīng)相等的兩個三角形全等AAS—兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等SSS—三邊對應(yīng)相等的兩個三角形全等AAA—三角對應(yīng)相等的兩個三角形不一定全等SSA—兩邊和其中一邊的對角對應(yīng)相等的兩
2025-08-15 20:27
【總結(jié)】問題1:用同一張底片沖洗出來的5張照片有什么特點?問題2:把一張紙對折,從中剪下兩個四邊形,這兩個四邊形怎樣?問題3:開學(xué)時同學(xué)們都發(fā)了數(shù)學(xué)課本,這些數(shù)學(xué)課本從外表上看有什么特點?思考:同一張底片洗出的兩張照片疊放在一起怎么樣?能夠完全重合的兩個圖形叫做全等形全等形
2024-11-11 23:19
【總結(jié)】北師版數(shù)學(xué)八年級(下)第四章相似圖形§相似三角形回顧:各角對應(yīng)相等,各邊對應(yīng)成比例的兩個多邊形叫做相似多邊形。注意:對應(yīng)的位置上.相似比.有順序性的.回顧感知下列說法正確的是()...
2025-08-04 13:49
【總結(jié)】全等三角形問題中常見的輔助線的作法(含答案)總論:全等三角形問題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個角之間的相等【三角形輔助線做法】圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗。三角形中兩中點,連
2025-03-24 07:40
【總結(jié)】全等三角形問題中常見的輔助線的作法(有答案)總論:全等三角形問題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個角之間的相等【三角形輔助線做法】圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗。三角形中兩中點,連
2025-06-16 21:30
【總結(jié)】幾何證明中常見的“添輔助線”方法一.連結(jié)一.連結(jié)典例1:如圖,AB=AD,BC=DC,求證:∠B=∠D.ACBDAC構(gòu)造全等三角形BD構(gòu)造兩個等腰三角形一.連結(jié)典例2:如圖,AB=AE,BC=ED
2025-07-26 19:16
【總結(jié)】全等三角形中輔助線的添加:全等三角形的常見輔助線的添加方法、基本圖形的性質(zhì)的掌握及熟練應(yīng)用。二.知識要點:1、添加輔助線的方法和語言表述(1)作線段:連接……;(2)作平行線:過點……作……∥……;(3)作垂線(作高):過點……作……⊥……,垂足為……;(4)作中線:取……中點……,連接……;(5)延長并截取線段:延長……使……等于……;(6)截取等長線段
2025-06-19 22:20
【總結(jié)】......全等三角形中做輔助線技巧要點大匯總口訣:三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連
2025-06-25 04:30
【總結(jié)】全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”
2025-06-19 21:56
【總結(jié)】幾何證明-常用輔助線(一)中線倍長法:例1、求證:三角形一邊上的中線小于其他兩邊和的一半。已知:如圖,△ABC中,AD是BC邊上的中線,求證:AD﹤(AB+AC)分析:要證明AD﹤(AB+AC),就是證明AB+AC2AD,也就是證明兩條線段之和大于第三條線段,而我們只能用“三角形兩邊之和大于第三邊”,但題中的三條線段
2025-06-25 21:39
【總結(jié)】全等三角形證明方法中輔助線做法1、截長補短通過添加輔助線利用截長補短,從而達(dá)到改變線段之間的長短,達(dá)到構(gòu)造全等三角形的條件1.如圖1,在△ABC中,∠ABC=60°,AD、CE分別平分∠BAC、∠ACB.求證:AC=AE+CD. 分析:要證AC=AE+CD,AE、CD不在同一直線上.故在AC上截取AF=AE,則只要證明
2025-03-24 07:41
【總結(jié)】全等三角形作輔助線經(jīng)典例題常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點
2025-03-24 07:38
【總結(jié)】第1頁共3頁八年級數(shù)學(xué)全等三角形的性質(zhì)(全等三角形)基礎(chǔ)練習(xí)試卷簡介:全卷共3個選擇題,9個填空題,2個解答題和1個證明題,測試時間為30分鐘,共100分。本卷試題立足基礎(chǔ),主要考察了學(xué)生對全等三角形性質(zhì)的掌握情況。各個題目難度不一,學(xué)生在做題過程中可回顧本章知識點,加強對全等三角形的認(rèn)識。
2025-08-11 22:01
【總結(jié)】初二數(shù)學(xué)電話:2201400022364000全等三角形測試卷一.選擇題(共10題,30分)1、下列命題中:⑴形狀相同的兩個三角形是全等形;⑵在兩個三角形中,相等的角是對應(yīng)角,相等的邊是對應(yīng)邊;⑶全等三角形對應(yīng)邊上的高、中線及對應(yīng)角平分線分別相等,其中真命題的個數(shù)有()A、3個B、2個
2025-04-04 03:28