【總結(jié)】等差數(shù)列(第1課時(shí))學(xué)習(xí)目標(biāo)掌握等差數(shù)列的概念;理解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項(xiàng)公式解決相應(yīng)的一些問(wèn)題.讓學(xué)生親身經(jīng)歷“從特殊入手,研究對(duì)象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過(guò)程,培養(yǎng)他們觀(guān)察、分析、歸納、推理的能力.通過(guò)對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生
2024-12-08 20:23
【總結(jié)】景榮洲課前熱身(3)等差數(shù)列的性質(zhì).(1)等差數(shù)列的定義.一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列(2)等差數(shù)列通項(xiàng)公式dnaan)1(1???若a、b、c成等差數(shù)列,則2b=a+c(引申)若m、n、
2024-11-17 05:48
【總結(jié)】.1等差數(shù)列的概念七、教學(xué)過(guò)程(一)創(chuàng)設(shè)情景,引入概念(設(shè)計(jì)意圖:通過(guò)對(duì)實(shí)際問(wèn)題的分析對(duì)比,建立等差數(shù)列模型,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的過(guò)程)情景1:把班上學(xué)生學(xué)號(hào)從小到大排成一列:如:1,2,3,4,?,63,64.問(wèn)題1:請(qǐng)學(xué)生歸納出上一個(gè)數(shù)列的通項(xiàng)公式),521(,?????Nnnnan。問(wèn)
2024-11-19 21:23
【總結(jié)】高中數(shù)學(xué)必修5期末復(fù)習(xí)等差數(shù)列一、選擇題:1.三個(gè)數(shù),,abc既是等差數(shù)列,又是等比數(shù)列,則,,abc間的關(guān)系為()A.bacb???B.2bac?C.abc??D.0abc???2.下列關(guān)于星星的圖案構(gòu)成一個(gè)數(shù)列,該數(shù)列的一個(gè)通項(xiàng)公式是()
2024-11-30 07:49
【總結(jié)】定義:按一定次序排列的一列數(shù)叫數(shù)列(3)數(shù)列中的數(shù)是有順序的,而數(shù)集合的數(shù)是無(wú)序的。(2)數(shù)列中的數(shù)是可重復(fù)的,而數(shù)集中的數(shù)是互異的。(1)數(shù)列與數(shù)集都是具有某種共同屬性的數(shù)的全體。知識(shí)回顧數(shù)列與數(shù)集有何區(qū)別和聯(lián)系數(shù)列分類(lèi):項(xiàng)數(shù)有限的數(shù)列叫有窮數(shù)列;項(xiàng):數(shù)列中的每一個(gè)數(shù)叫做這
2024-11-18 08:48
【總結(jié)】課題:等差數(shù)列教學(xué)目標(biāo)::理解等差數(shù)列的概念,了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想,掌握等差數(shù)列的通項(xiàng)公式。:培養(yǎng)學(xué)生觀(guān)察、歸納能力,在學(xué)習(xí)過(guò)程中,體會(huì)歸納思想和化歸思想并加深認(rèn)識(shí);通過(guò)概念的引入與通項(xiàng)公式的推導(dǎo),培養(yǎng)學(xué)生分析探索能力,增強(qiáng)運(yùn)用公式解決實(shí)際問(wèn)題的能力:①通過(guò)個(gè)性化的學(xué)習(xí)增強(qiáng)學(xué)生的自信心和意志
2024-11-28 20:55
【總結(jié)】第一頁(yè),編輯于星期六:點(diǎn)三十四分。,2.2等差數(shù)列第一課時(shí)等差數(shù)列的概念及通項(xiàng)公式,第二頁(yè),編輯于星期六:點(diǎn)三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)三十四分。,第四頁(yè),編...
2024-10-22 18:52
【總結(jié)】、b、c成等差數(shù)列2cab??2b=a+c????1.{an}為等差數(shù)列?an+1-an=d?an+1=an+dan=a1+(n-1)d?an=kn+b(k、b為常數(shù))b為a、c的等差中項(xiàng)知識(shí)回顧結(jié)論歸納:數(shù)列{an}是公差為d的等差數(shù)列。
【總結(jié)】等差數(shù)列定義:按一定次序排列的一列數(shù)叫數(shù)列(3)數(shù)列中的數(shù)是有順序的,而數(shù)集合的數(shù)是無(wú)序的。(2)數(shù)列中的數(shù)是可重復(fù)的,而數(shù)集中的數(shù)是互異的。(1)數(shù)列與數(shù)集都是具有某種共同屬性的數(shù)的全體。知識(shí)回顧數(shù)列與數(shù)集有何區(qū)別和聯(lián)系數(shù)列分類(lèi):項(xiàng)數(shù)有限的數(shù)列叫有窮數(shù)列;
【總結(jié)】§等差數(shù)列2.等差數(shù)列自主學(xué)習(xí)知識(shí)梳理1.等差數(shù)列的定義一般地,如果一個(gè)數(shù)列從第____項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于____常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的____,通常用字母______表示.2.等差中項(xiàng)如果A=a+b2,那么A叫做a與
2024-11-19 02:28
【總結(jié)】等差數(shù)列的前n項(xiàng)和2.等差數(shù)列的前n項(xiàng)和公式:1()2nnnaaS??1.若已知數(shù)列{an}前n項(xiàng)和為Sn,則該數(shù)列的通項(xiàng)公式為S1,n=1Sn-Sn-1,n≥2an=一、復(fù)習(xí)3.若數(shù)列{an}為等差數(shù)列:1(1)2nnnad???2,
2024-11-18 12:17
【總結(jié)】等差數(shù)列的前n項(xiàng)和一、教材分析1.教學(xué)內(nèi)容:本節(jié)課是高中人教A版必修5第二章第三節(jié)第一課時(shí)的內(nèi)容。主要研究等差數(shù)列的前n項(xiàng)和公式的推導(dǎo)及其簡(jiǎn)單應(yīng)用。2.地位與作用本節(jié)課是前面所學(xué)知識(shí)的延續(xù)和深化,又是后面學(xué)習(xí)“等比數(shù)列及其前n項(xiàng)和”的基礎(chǔ)和前奏。學(xué)好了本節(jié)課的內(nèi)容,既能加深對(duì)數(shù)列有關(guān)概念的理解,又能為后面學(xué)好等比數(shù)列及數(shù)列求和
2024-12-08 20:22
【總結(jié)】《等差數(shù)列》教案 《等差數(shù)列》教案1教學(xué)目標(biāo): ?。豪斫獾炔顢?shù)列的概念,了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想,掌握并會(huì)用等差數(shù)列的通項(xiàng)公式,初步引入“數(shù)學(xué)建模”的思想方法并能運(yùn)用。 ...
2024-12-03 04:38
【總結(jié)】第2課時(shí)等差數(shù)列1.等差數(shù)列的定義:-=d(d為常數(shù)).2.等差數(shù)列的通項(xiàng)公式:⑴an=a1+×d⑵an=am+×d3.等差數(shù)列的前n項(xiàng)和公式:Sn==.4.等差中項(xiàng):如
2024-11-30 14:35
【總結(jié)】等差數(shù)列的概念及通項(xiàng)公式?學(xué)習(xí)目標(biāo):,理解等差數(shù)列的概念..,發(fā)現(xiàn)數(shù)列的等差關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題..復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)
2024-11-17 17:33