【導(dǎo)讀】:①△AED≌△DFB;②S四邊形BCDG=232CG;③若AF=2DF,則BG=6GF;④CG與BD一定不垂直。③過點(diǎn)F作FP∥AE于P點(diǎn)(如圖2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD. ,∴BE=2AE,∴FP:BE=FP:12AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn),∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC與△BGC中,∵DG=BG. ⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項(xiàng)正確;7.已知菱形1111ABCD的邊長(zhǎng)為2,111ABC?角坐標(biāo)系.以11BD為對(duì)角線作菱形1212BCDA∽菱形1111ABCD,再以22AC為對(duì)角線作菱形。試題分析:∵四邊形ABCD是正方形,∴BC=DC,∠BCE=90°,同理可得CE=CG,∠DCG=90°∠DGC,∵∠EDH=∠CDG,∠DGC+∠CDG=90°,∴∠EDH+∠BEC=90°,∴∠EHD=90°,∴GH. 設(shè)EC和OH相交于點(diǎn)N.設(shè)HN=a,則BC=2a,設(shè)正方形ECGF的邊長(zhǎng)是2b,則NC=b,CD=2a,∵OH. ∥BC,∴△DHN∽△DGC,∴DNHNDCCG?∵EF∥OH,∴△EFM∽△OMH,∴2EMEFbOMOHab???在點(diǎn)P處,折痕為EC,連結(jié)AP并延長(zhǎng)AP交CD于F點(diǎn),若△AEP是等邊三角形,連結(jié)BP,求證:△APB≌△EPC;