【導(dǎo)讀】解析∵S101=a1+a1012,∴a1+a101=0.解析∵a2-a3=2,∴公差d=a3-a2=-2.又a1+a4=a1+=2a1-6=10,∴a1=8,∴Sn=-n2+9n.5.{an}是等差數(shù)列,首項(xiàng)a1>0,a2003+a2004>003·a2004<0,則使前n. 又S4007=a1+a40072=4007·a2004<0.∴選B.a1+a2+a3+a4+a5+a6+a7=7a4=0,∴a4=0.∴a1=a4-3d=0-3·(-57)=157.解析由條件得2am=am-1+am+1=a2m,從而有am=0或S2m-1=a1+a2m-12×=8×(-1)+8×72×2=48.13.等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為An和AnBn=3n-12n+3,則a13b13的值為。15.已知等差數(shù)列{an}中,a3a7=-16,a4+a6=0,求{an}的前n項(xiàng)和Sn.即lgx=111,∴x=10111.由①+③,得13d≤-1,即d≤-113.將④代入①②得10<a1≤12.又a1∈Z,故a1=11或a1=12.