【總結(jié)】第4課時(shí)等差數(shù)列的前n項(xiàng)和n項(xiàng)和.n項(xiàng)和公式解決有關(guān)等差數(shù)列的問題.n項(xiàng)和公式的推導(dǎo)方法.高斯是數(shù)學(xué)發(fā)展史上有很大影響的偉大數(shù)學(xué)家之一.高斯十歲時(shí)數(shù)學(xué)老師出了一道題:1+2+3+?+99+100.老師剛寫完題目高斯就把解題用的小石板交給了老師,上面只有5050一個(gè)答案.當(dāng)時(shí)
2024-12-08 02:37
【總結(jié)】等差數(shù)列的前n項(xiàng)和復(fù)習(xí)數(shù)列的有關(guān)概念1…,按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,第2項(xiàng)用表示,第n項(xiàng)用表示,…,數(shù)列的一般形式可以寫成:
2024-11-09 12:24
【總結(jié)】《等差數(shù)列前n項(xiàng)和》教案(高一年級第一冊·第三章第三節(jié))一、教材分析●教學(xué)內(nèi)容《等差
2025-04-17 07:45
【總結(jié)】課題:等差數(shù)列前n項(xiàng)和公式(1)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】掌握等差數(shù)列的前n項(xiàng)和的公式及推導(dǎo)該公式的數(shù)學(xué)思想方法,能運(yùn)用等差數(shù)列的前n項(xiàng)和的公式求等差數(shù)列的前n項(xiàng)和.【課前預(yù)習(xí)】1.(1)你如何快速求出?100321??????
2024-11-20 01:05
【總結(jié)】第六章數(shù)列二等差數(shù)列第1課時(shí)課題:(1)教學(xué)目標(biāo)1、知識點(diǎn):了解等差數(shù)列前項(xiàng)和的定義,了解倒序相加的原理,理解等差數(shù)列前項(xiàng)和公式推導(dǎo)的過程,掌握等差數(shù)列前項(xiàng)和的公式,記憶公式的兩種形式,并能運(yùn)用公式解決簡單的問題.;2、能力訓(xùn)練目標(biāo):(1)通過公式的推導(dǎo)和公式的運(yùn)用,使學(xué)生體會(huì)從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認(rèn)識問題,解決問題的一般
2025-04-17 08:31
【總結(jié)】等差數(shù)列的前n項(xiàng)和A組基礎(chǔ)鞏固1.在等差數(shù)列{an}中,S10=120,則a2+a9=()A.12B.24C.36D.48解析:S10=a1+a102=5(a2+a9)=120.∴a2+a9=24.答案:B2.設(shè)數(shù)列{an}是等差數(shù)列,且a2=-6,a8=6,Sn是
2024-12-08 20:22
【總結(jié)】復(fù)習(xí)回顧通項(xiàng)公式:等差數(shù)列中:前n項(xiàng)和公式:例題講解例1.求集合中元素的個(gè)數(shù),并求這些元素的和。解:代公式可得或由,即或答:集合M中共有14個(gè)元素,它們的和等于7
2024-11-09 05:34
【總結(jié)】(理解等差數(shù)列的概念/掌握等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式/了解等差數(shù)列與一次函數(shù)的關(guān)系)第五單元數(shù)列等差數(shù)列及其前n項(xiàng)和1.等差數(shù)列:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列(arithmeticsequence),這個(gè)常數(shù)就叫做等差數(shù)列
2025-05-12 17:18
【總結(jié)】=(1100)(299)(5051)??????原式那么S=1+2+3+…+997+998+999=?倒序相加法求等差數(shù)列前n項(xiàng)和:)?梯上底下底高(+S=2解:3)1313??11371(a+a2aS===52.2
【總結(jié)】第一篇:《等差數(shù)列的前n項(xiàng)和》教學(xué)反思 等差數(shù)列的前n項(xiàng)和教學(xué)反思 瀛海學(xué)校曹娜 一、地位和作用 本節(jié)課是必修5第二章第三節(jié)“等差數(shù)列的前n項(xiàng)和”的第一課時(shí),主要內(nèi)容是等差數(shù)列的前n項(xiàng)和公式的...
2024-10-23 00:32
【總結(jié)】等差數(shù)列的前n項(xiàng)和一、教材分析1.教學(xué)內(nèi)容:本節(jié)課是高中人教A版必修5第二章第三節(jié)第一課時(shí)的內(nèi)容。主要研究等差數(shù)列的前n項(xiàng)和公式的推導(dǎo)及其簡單應(yīng)用。2.地位與作用本節(jié)課是前面所學(xué)知識的延續(xù)和深化,又是后面學(xué)習(xí)“等比數(shù)列及其前n項(xiàng)和”的基礎(chǔ)和前奏。學(xué)好了本節(jié)課的內(nèi)容,既能加深對數(shù)列有關(guān)概念的理解,又能為后面學(xué)好等比數(shù)列及數(shù)列求和
【總結(jié)】等差數(shù)列的前n項(xiàng)和教材分析等差數(shù)列的前n項(xiàng)和是數(shù)列的重要內(nèi)容,也是數(shù)列研究的基本問題.在現(xiàn)實(shí)生活中,等差數(shù)列的求和是經(jīng)常遇到的一類問題.等差數(shù)列的求和公式,為我們求等差數(shù)列的前n項(xiàng)和提供了一種重要方法.教材首先通過具體的事例,探索歸納出等差數(shù)列前n項(xiàng)和的求法,接著推廣到一般情況,推導(dǎo)出等差數(shù)列的前n項(xiàng)和公式.為深化對公式的理解,通過對具體例子的研究,弄清等差數(shù)列的前n項(xiàng)和與等差
2025-06-07 23:54
【總結(jié)】第一篇:等差數(shù)列的前n項(xiàng)和教案 等差數(shù)列的前n項(xiàng)和 一:教材分析 本節(jié)課內(nèi)容位于高中人教版必修五第二章第三節(jié)。它是在學(xué)習(xí)了等差數(shù)列的基礎(chǔ)上來研究和討論的,是繼等差數(shù)列之后的又一重要的概念。主要利...
2024-10-23 17:55
【總結(jié)】等差數(shù)列前n項(xiàng)和公式復(fù)習(xí)回顧(1)等差數(shù)列的通項(xiàng)公式:已知首項(xiàng)a1和公差d,則有:an=a1+(n-1)d已知第m項(xiàng)am和公差d,則有:an=am+(n-m)d,d=(an-am)/(n-m)
2025-08-15 20:34
【總結(jié)】等差數(shù)列的前n項(xiàng)和數(shù)列{an}是等差數(shù)列的條件an-an-1=d等差數(shù)列{an}的通項(xiàng)公式an=a1+(n-1)d等差數(shù)列{an}的性質(zhì)m+n=p+qam+an=ap+aq一、數(shù)列前n項(xiàng)和的意義數(shù)列{an}:a1,a2,a3,…,an,…我們把a(bǔ)1+
2024-10-09 17:27