【導(dǎo)讀】解析由a1>0,且an+1=12an,3.已知數(shù)列{an}的項滿足an+1=nn+2an,而a1=1,通過計算a2,a3,猜想an等于(). 同理a3=16=23×4.猜想an=2nn+.解析由題可得,a2=a1+a1,所以a1=-3,a10=a1+a9=…5.?dāng)?shù)列{an}中,a1=1,對所有的n≥2,都有a1·a2·a3…∴an-an+1=c-1n+1-c-1n+2=c-1n+n+.①數(shù)列an=2是常數(shù)列;③數(shù)列{n2n+1}是遞增數(shù)列;9.函數(shù)f定義如下表,數(shù)列{xn}滿足x0=5,且對任意的自然數(shù)均有xn+1=f,解析由題意可得x1,x2,x3,x4,x5,…期為3的周期數(shù)列.∴x2012=x3×670+2=x2=1.∵an-an-1=-an(n≥2),∴當(dāng)a>0時,an-an-1<0.,分別考查數(shù)列的分子,分母與項數(shù)n. 的關(guān)系以及符號相間出現(xiàn),第一項為正,所以數(shù)列的通項公式為an=(-1)n+1nn+2.當(dāng)n=15時,則a15=1517;將an中n換成2n+1時,得a2n+1=2n+12n+3.寫出數(shù)列{an}的前5項;∴a2+2a1a2-a1=0,解得a2=13.