【導(dǎo)讀】零向量d叫做直線的一個(gè)方向向量。,有無(wú)數(shù)條法向量??偪梢栽谕黄矫鎯?nèi),數(shù)量積運(yùn)算等都可以推廣到空間.練習(xí)1:已知平行六面體ABCD-A1B1C1D1,并標(biāo)出化簡(jiǎn)結(jié)果的向量。具有同樣的運(yùn)算律.A1B1C1D1的底面ABCD是邊長(zhǎng)為1的菱形,且∠C1CB=∠C1CD=∠BCD=60°,解:因?yàn)椤螪1DA=∠C1CB=60°
【總結(jié)】一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2024-11-09 01:17
【總結(jié)】一、向量的直角坐標(biāo)運(yùn)算二、距離與夾角(1)向量的長(zhǎng)度(模)公式注意:此公式的幾何意義是表示長(zhǎng)方體的對(duì)角線的長(zhǎng)度。在空間直角坐標(biāo)系中,已知、,則(2)空間兩點(diǎn)間的距離公式注意:(1)當(dāng)時(shí),同向;(2)當(dāng)
2024-11-12 16:42
【總結(jié)】2020年12月16日星期三學(xué)習(xí)目標(biāo)?1.理解空間向量的概念,掌握空間向量的加法運(yùn)算。?2.用空間向量的運(yùn)算意義和運(yùn)算律解決立幾問(wèn)題。?重點(diǎn):空間向量的加法、減法運(yùn)算律。?難點(diǎn):用向量解決立幾問(wèn)題.OABC正東正北向上如圖:已知OA=6米,AB=6米,BC=3米,
2024-11-09 08:04
【總結(jié)】下關(guān)一中2014級(jí)數(shù)學(xué)空間向量及其運(yùn)算1.空間向量的概念:在空間,我們把具有大小和方向的量叫做向量注:⑴空間的一個(gè)平移就是一個(gè)向量⑵向量一般用有向線段表示同向等長(zhǎng)的有向線段表示同一或相等的向量⑶空間的兩個(gè)向量可用同一平面內(nèi)的兩條有向線段來(lái)表示2.空間向量的運(yùn)算定義:與平面向量運(yùn)算一樣,空間向量的加法、減法與數(shù)乘向量運(yùn)算如下;;運(yùn)算律:⑴加法交換律:⑵加法結(jié)
2025-03-23 11:39
【總結(jié)】坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,)
2024-11-18 12:14
【總結(jié)】數(shù)量積運(yùn)算一、兩個(gè)向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個(gè)向量的數(shù)量積注:①兩個(gè)向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
【總結(jié)】高二數(shù)學(xué)教學(xué)設(shè)計(jì)——設(shè)計(jì)人:董永興教材分析:引入空間直角坐標(biāo)系,為學(xué)生學(xué)習(xí)立體幾何提供了新的方法和新的觀點(diǎn),為培養(yǎng)學(xué)生思維提供了更廣闊的空間,在學(xué)生學(xué)習(xí)了空間向量的幾何形式和運(yùn)算,以及基本定理的基礎(chǔ)上進(jìn)一步學(xué)習(xí)空間向量的坐標(biāo)運(yùn)算及其規(guī)律,是平面向量的坐標(biāo)運(yùn)算在空間推廣和拓展,為運(yùn)用向量坐標(biāo)運(yùn)算解
2025-04-16 12:24
【總結(jié)】數(shù)乘運(yùn)算上一節(jié)課,我們把平面向量的有關(guān)概念及加減運(yùn)算擴(kuò)展到了空間.平面向量空間向量加法減法運(yùn)算加法:三角形法則或平行四邊形法則減法:三角形法則運(yùn)算律加法交換律abba???加法結(jié)合律:()()ab
【總結(jié)】?空間向量數(shù)量積運(yùn)算律(分配律)的說(shuō)明?a·(b+c)=a·b+a·c,對(duì)于平面向量cba??2?1ADEOBC因?yàn)閨b+c|cosθ=|b|cosθ1+|c|cosθ2|a||b+c|cosθ=|a||b|cosθ1+|a||c|cosθ2所以:a·
2025-07-23 08:49
【總結(jié)】浙江省玉環(huán)縣楚門(mén)中學(xué)呂聯(lián)華㈠向量的定義:在空間,我們把具有大小和方向的量叫做向量。a···ABCDB1A1C1D1這個(gè)”平移“就是一個(gè)向量a=―自西向東平移4個(gè)單位”b記作:向量a、b。兩個(gè)向量不能比較大小,因?yàn)闆Q定向量的兩個(gè)因素是大小
2024-11-10 00:47
【總結(jié)】2020年12月16日星期三a(k0)ka(k0)k空間向量的數(shù)乘K=0?0abab+OABCOBOAABCAOAOC????空間向量的加減空間向量的加法、減法與數(shù)乘運(yùn)算bkakbak+??)(數(shù)乘分配律數(shù)乘
2024-11-09 01:05
【總結(jié)】高考總復(fù)習(xí).理科.數(shù)學(xué)第八章平面向量高考總復(fù)習(xí).理科.數(shù)學(xué)考綱分解解讀高考總復(fù)習(xí).理科.數(shù)學(xué)(1)了解向量的實(shí)際背景.(2)理解平面向量的概念,理解兩個(gè)向量相等的含義.(3)理解向量的幾何表示.2.(1)掌握向量加法、減法的運(yùn)算,并理解其幾何意義.
2025-08-01 17:58
【總結(jié)】課時(shí)作業(yè)(十五)一、選擇題1.設(shè)a、b、c是任意的非零平面向量,且它們相互不共線,下列命題:①(a·b)c-(c·a)b=0;②|a|=;③a2b=b2a;④(3a+2b)·(3a-2b)=9|a|2-4|b|( )A.①② B.②③ C.③④ D.②④【解析】 由于數(shù)量積不滿足結(jié)合律,故①不正確,由數(shù)量積的性質(zhì)知②正確,③中|a|
2025-03-25 06:42
【總結(jié)】數(shù)乘運(yùn)算(二)一、共線向量:零向量與任意向量共線.:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作//ab:對(duì)空間任意兩個(gè)向量
【總結(jié)】空間向量及其運(yùn)算空間向量及其加減運(yùn)算教學(xué)目標(biāo):(1)通過(guò)本章的學(xué)習(xí),使學(xué)生理解空間向量的有關(guān)概念。(2)掌握空間向量的加減運(yùn)算法則、運(yùn)算律,并通過(guò)空間幾何體加深對(duì)運(yùn)算的理解。能力目標(biāo):(1)培養(yǎng)學(xué)生的類比思想、轉(zhuǎn)化思想,數(shù)形結(jié)合思想,培養(yǎng)探究、研討、綜合自學(xué)應(yīng)用能力。(2)培養(yǎng)學(xué)生空間想象能力,能借助圖形理解空
2024-11-24 14:20