【導(dǎo)讀】在空間,我們把具有大小和方向的量叫做向量。跡所形成的幾何體,叫做平行六面體。例1:已知平行六面體ABCD-A1B1C1D1,已知空間向量四邊形ABCD,連接AC、BD,設(shè)M,G分別。已知正方體ABCD-A1B1C1D1,點E、F分別是上底面A1C1
【總結(jié)】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-09 04:47
【總結(jié)】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,
2024-11-10 01:04
【總結(jié)】第七章立體幾何第六節(jié)空間向量及其運算抓基礎(chǔ)明考向提能力教你一招我來演練返回[備考方向要明了]考什么.,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標表示.
2025-05-03 08:38
【總結(jié)】(了解空間向量的概念/掌握空間向量的線性運算/掌握空間向量的數(shù)量積,能運用向量的數(shù)量積判斷向量的共線與垂直)空間向量及其運算1.空間向量的概念:在空間,我們把具有大小和方向的量叫做向量.(1)空間的一個就是一個向量.(2)向量一般用有向線段表示.同向等長的有向線段表示
2025-05-03 02:38
【總結(jié)】空間向量及其運算(第一課時)普通高中課程標準實驗教科書(人教A版)選修2-1第三章第一節(jié)空間向量及其加減、數(shù)乘運算說課提綱2學(xué)情分析目標分析34教法分析5過程分析教材分析16教學(xué)反思一、教材所處的地位和作用?教學(xué)
2025-06-12 19:01
【總結(jié)】2020年12月16日星期三a(k0)ka(k0)k空間向量的數(shù)乘K=0?0abab+OABCOBOAABCAOAOC????空間向量的加減空間向量的加法、減法與數(shù)乘運算bkakbak+??)(數(shù)乘分配律數(shù)乘
2024-11-09 01:05
【總結(jié)】一、平面向量復(fù)習(xí)⒈定義:既有大小又有方向的量叫向量.幾何表示法:用有向線段表示;字母表示法:用字母a、b等或者用有向線段的起點與終點字母表示.AB相等的向量:長度相等且方向相同的向量.ABCD⒉平面向量的加減法運算⑴向量的加法:ab平行四邊形
2024-11-18 11:25
【總結(jié)】1思考1思考2引入思考3課外思考P競賽輔導(dǎo)─向量法2利用向量處理幾何問題,最重要的是要先在幾何圖形中尋找具有向量因素的特征,如共線、平行、垂直、線段的倍分等,然后引進向量通過向量的運算,來達到解(證)幾何題的目的.下面就這一方法在解題中的應(yīng)用做一些思考.競賽輔
2024-11-09 09:21
【總結(jié)】向量的加法與減法如圖,已知向量a、b.在平面內(nèi)任取一點A,作,,則向量叫做a與b的和,記作a+b,即1.向量的加法:求兩個向量和的運算,叫做向量的加法。三角形法則“首尾相接,首尾連”aAB?bBC?ACACBCABba????aba
2024-11-10 08:36
【總結(jié)】第1節(jié)平面向量的概念及線性運算(對應(yīng)學(xué)生用書第59~60頁)1.向量的有關(guān)概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的長度(或稱模).(2)零向量:長度為0的向量叫做零向量,其方向是任意的.(3)單位向量:長度等于1個單位的向量.(4)平行向量:方向相同
2024-11-11 09:01
【總結(jié)】1、平面向量的坐標表示與平面向量分解定理的關(guān)系。2、平面向量的坐標是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2024-11-11 21:09
【總結(jié)】1、平面向量的坐標表示與平面向量分解定理的關(guān)系。2、平面向量的坐標是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=
2024-11-11 21:10
【總結(jié)】第1講集合的概念及運算知識體系?理解集合、子集、真子集、交集、并集、補集的概念,了解全集、空集、屬于、包含、相等關(guān)系的意義,掌握有關(guān)的術(shù)語和符號,能使用韋恩圖表達集合的關(guān)系及運算.-1若a=1,則a2=1,這與集合中元素的互異性矛盾;若a2=1,則a=-1或a=1(舍去),故a=-1符合題意.
2024-11-10 12:24
【總結(jié)】向量共線的條件和軸上向量的坐標運算一般地,實數(shù)λ與向量a的積是一個向量,這種運算叫做向量的數(shù)乘運算,記作λa,它的長度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當λ0時,λa的方向與a方向相同;當λ0時,λa的方向與a方向相反;特別地,當
2024-11-10 00:49