【導(dǎo)讀】,并會用基本不等式來解題.今天我們來探究基本不等式在實(shí)際生活中的應(yīng)用,當(dāng)且僅當(dāng),即時,取得最小值.在定義域內(nèi),求出函數(shù)的;可用基本不等式的形式,倘若要多次利用不等式求最值,還必須保證每次取“=”號的一致性.1D在下列不等式的證明過程中,正確的是().=x,即x=20時等號成立.行道的寬分別為4米和10米.A1B1C1D1的長和寬該如何設(shè)計?已知x>0且x≠1,求lgx+logx10的取值范圍.
【總結(jié)】基本不等式與最大(小)值課時目標(biāo);(小)值問題.1.設(shè)x,y為正實(shí)數(shù)(1)若x+y=s(和s為定值),則當(dāng)______時,積xy有最____值,且這個值為________.(2)若xy=p(積p為定值),則當(dāng)______時,和x+y有最____值,且這個值為______.
2024-12-05 06:35
【總結(jié)】均值不等式的綜合應(yīng)用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應(yīng)用:11,lglg,(lglg),2lg(
2024-11-18 08:48
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-實(shí)際應(yīng)用》審校:王偉?掌握建立不等式模型解決實(shí)際問題.?教學(xué)重點(diǎn):?掌握建立不等式模型解決實(shí)際問題教學(xué)目標(biāo)例1.一般情況下,建筑民用住宅時。民用住宅窗戶的總面積應(yīng)小于該住宅的占地面積,而窗戶的總面積與占地面積的比值越大
2025-01-15 12:36
【總結(jié)】基本不等式的應(yīng)用教學(xué)目標(biāo):一、知識與技能1.能利用基本不等式解決最值問題;2.會利用基本不等式解決與三角有關(guān)問題.二、過程與方法1.通過實(shí)例體會基本不等式在最值問題中的應(yīng)用;2.通過實(shí)例體會總結(jié)基本不等式在應(yīng)用中需要注意的問題.三、情感、態(tài)度與價值觀通過親歷解題的過程,
2024-12-05 10:12
【總結(jié)】【成才之路】2021年春高中數(shù)學(xué)第3章不等式3基本不等式第2課時基本不等式與最大(小)值同步練習(xí)北師大版必修5一、選擇題1.已知a≥0,b≥0,且a+b=2,則()A.a(chǎn)b≤12B.a(chǎn)b≥12C.a(chǎn)2+b2≥2D.a(chǎn)2+b2≤2[答案]C
【總結(jié)】不等式第三章§3基本不等式第三章第2課時基本不等式與最大(小)值課堂典例講練2易混易錯點(diǎn)睛3課時作業(yè)5課前自主預(yù)習(xí)1本節(jié)思維導(dǎo)圖4課前自主預(yù)習(xí)下圖是2020年在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明
2024-11-17 03:39
【總結(jié)】第3課時一元二次不等式及其解法,掌握一元二次不等式的解法...為促進(jìn)某品牌彩電的銷售,廠家設(shè)計了兩套降價方案.方案①:先降價x%,再降價x%(x0);方案②:一次性降價2x%,問哪套方案降價幅度大?問題1問題2一個二次解成立的實(shí)數(shù)一元二次不等式一般地
2024-11-17 23:14
【總結(jié)】溫故知新1、比較兩實(shí)數(shù)大小的常用方法△=b2-4ac△0△=0△0)的圖象ax2+bx+c=0(a0)的根ax2+bx+0(a0)的解集ax2+bx+c0(a&
2024-11-17 17:33
【總結(jié)】專題基本不等式編者:高成龍專題基本不等式【一】基礎(chǔ)知識基本不等式:(1)基本不等式成立的條件:;(2)等號成立的條件:當(dāng)且僅當(dāng)時取等號.(1);(2);【二】例題分析【模塊1】“1”的巧妙替換【例1】已知,且,則的最小值為
2025-08-05 19:27
【總結(jié)】高中數(shù)學(xué)必修五基本不等式題型(精編)變2.下列結(jié)論正確的是()A.若,則B.若,則C.若,,則D.若,則3.若m=(2a-1)(a+2),n=(a+2)(a-3),則m,n的大小關(guān)系正確的是例2、解下列不等式(1)
2025-04-04 05:12
【總結(jié)】:2baab??復(fù)習(xí)引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2024-11-19 18:02
【總結(jié)】:2baab??引入新課提問1:我們把“風(fēng)車”造型抽象成下圖.在正方形ABCD中有4個全等的直角三角形.設(shè)直角三角形的兩條直角邊的長為a、b,那么正方形的邊長為多少?面積為多少呢?ADCBGEFH引入新課提問1:我們把“風(fēng)車”造型抽象成下圖.在
2024-11-19 18:20
【總結(jié)】淄川般陽中學(xué)洪貴云基本不等式:(說課)2baab??教材分析教法分析教學(xué)目標(biāo)教學(xué)過程設(shè)計說明一.教材分析(一)教材的地位和作用(二)課時安排一.教材分析(一)教材的地位和作用基本不等式
2025-08-04 23:52
【總結(jié)】課題:基本不等式的證明(2)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】運(yùn)用基本不等式求解函數(shù)最值問題.【課前預(yù)習(xí)】1.當(dāng)0??ab時,比較baabbaabbaab???????????????22222,,,,,的大小.(運(yùn)用基本不等式及比較法)
2024-11-20 01:04
【總結(jié)】課題:基本不等式(1)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】理解算術(shù)平均數(shù)與幾何平均數(shù)的定義及它們的關(guān)系.探究并了解基本不等式的證明過程,會用各種方法證明基本不等式.理解基本不等式的意義,并掌握基本不等式中取等號的條件是:當(dāng)且僅當(dāng)這兩個數(shù)相等.【課前預(yù)習(xí)】1.當(dāng)