【導讀】首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測。點處的導數(shù)的概念的過程.線斜率k=0,即所求的導數(shù)為0.能靈活地應用概念進行解題.曲線在點A(1,3)處的切線方程;應先求切點,再求切線方程.故所求的切線方程為y-3=6(x-1),
【總結】圓錐曲線與方程第二章§1橢圓橢圓的簡單幾何性質(zhì)第二章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習.2.利用橢圓的簡單幾何性質(zhì)解決一些簡單問題.橢圓的簡單幾何性質(zhì)1.觀察橢圓的圖形可以發(fā)現(xiàn),橢圓是_____對稱圖形,也是_____
2024-11-16 23:27
【總結】-*-第一章常用邏輯用語-*-§1命題首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡1.理解命題的定義及其構成,會判斷一個命題的真假.2.理解四種命題及其關系,掌握互為逆否命題的等價
2024-11-17 13:32
【總結】-*-第四章導數(shù)應用-*-§1函數(shù)的單調(diào)性與極值-*-導數(shù)與函數(shù)的單調(diào)性首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡1.結合實例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導數(shù)的關系.
2024-11-17 08:43
【總結】-*-第二章圓錐曲線與方程-*-§1橢圓-*-橢圓及其標準方程首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡1.了解橢圓的實際背景,理解橢圓、焦點、焦距的定義.2.掌
【總結】導數(shù)應用第四章§1函數(shù)的單調(diào)性與極值導數(shù)與函數(shù)的單調(diào)性第四章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習結合實例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導數(shù)的關系,能利用導數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間.函數(shù)的單調(diào)性與導函數(shù)正負的關
2024-11-16 23:23
【總結】導數(shù)的幾何意義一、基礎過關1.下列說法正確的是()A.若f′(x0)不存在,則曲線y=f(x)在點(x0,f(x0))處就沒有切線B.若曲線y=f(x)在點(x0,f(x0))處有切線,則f′(x0)必存在C.若f′(x0)不存在,則曲線y=f(x)在點(x0,
2024-12-03 11:30
【總結】【成才之路】2021-2021學年高中數(shù)學北師大版選修1-1一、選擇題1.設y=e3,則y′等于()A.3e2B.e2C.0D.以上都不是[答案]C[解析]∵y=e3是一個常數(shù),∴y′=0.2.已知函數(shù)f(x)=x3的切線的斜率等于3,則切線有()A.1條
2024-11-28 19:11
【總結】-*-函數(shù)的極值首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡1.結合函數(shù)的圖像,正確理解函數(shù)極值的概念,了解可導函數(shù)有極值點的充分條件和必要條件.2.掌握利用導數(shù)判斷可導函數(shù)極值的方法,能熟練地求出已知函數(shù)的
【總結】圓錐曲線與方程第二章§1橢圓橢圓及其標準方程第二章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習,經(jīng)歷從具體情境中抽象出橢圓的過程和橢圓標準方程的推導與化簡過程.2.掌握橢圓的定義、標準方程及幾何圖形,會用待定系數(shù)法求橢圓的標準方程.___________
【總結】-*-§3雙曲線-*-雙曲線及其標準方程首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡1.理解并掌握雙曲線的定義,了解雙曲線的焦點、焦距.2.掌握雙曲線的標準方程,能利用定義求標準方程
2024-11-16 23:24
【總結】第3課時計算導數(shù),求函數(shù)y=c,y=x,y=x2,y=等的導數(shù).y=c,y=x,y=x2,y=等的導數(shù).y=c,y=x,y=x2,y=等的導數(shù)公式解決問題..根據(jù)導數(shù)的概念,我們知道可以用定義法求函數(shù)f(x)=x3的導數(shù),那么是否有公式法來求它的導數(shù)呢?問題1:
2024-12-05 06:33
【總結】數(shù)學命題?一、判斷與命題?1.判斷?判斷是對思維對象有所斷定的一種思維形式。這里所說的斷定,就是“肯定”或“否定”事物的某種性質(zhì)或事物之間有某種關系。如:是無理數(shù);它不是一位教師。?判斷作為一種思維形式,具有兩個基本的邏輯特征:?(1)必須有斷定。
2024-11-17 15:05
【總結】數(shù)學:2.1《橢圓》第一課時F2F1M只需將x,y交換位置即得橢圓的標準方程.xyo如果以橢圓的焦點所在直線為y軸,且F1、F2的坐標分別為(0,-c)和(0,c),a、b的含義都不變,那么橢圓又有怎樣的標準方程呢?如果已知橢圓的標準方程
2024-11-17 17:38
【總結】導數(shù)的概念、運算及其幾何意義1.已知物體做自由落體運動的方程為若無限趨近于0時,無限趨近于,那么正確的說法是()A.是在0~1s這一段時間內(nèi)的平均速度B.是在1~(1+)s這段時間內(nèi)的速度C.是物體從1s到(1+)s這段時間內(nèi)的平均速度D.是物體在這一時刻的瞬時速度.2.已知函數(shù)f’(x)=3x2,則f
2025-04-04 05:08
【總結】雙基達標?限時20分鐘?1.函數(shù)y=f(x)在x=x0處的導數(shù)f′(x0)的幾何意義是().A.在點x0處的斜率B.在點(x0,f(x0))處切線與x軸所夾銳角的正切值C.曲線y=f(x)在點(x0,f(x0))處切線的斜率D.點(x0,f(x0))與點(0,0)連線的斜率解析由導
2024-12-03 00:14