【導(dǎo)讀】na中,首項(xiàng)a1=21,a8>6,a7≤6,則此數(shù)列的公差d的取值范圍是()
【總結(jié)】等差數(shù)列教案設(shè)計(jì)一、教案內(nèi)容分析本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時(shí)。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公
2025-04-17 08:32
【總結(jié)】《等差數(shù)列》教學(xué)設(shè)計(jì)教材分析 :本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書?數(shù)學(xué)5》(人教A版)第二章《數(shù)列》的第二節(jié)內(nèi)容,即《等差數(shù)列》第一課時(shí)。研究等差數(shù)列的定義和通項(xiàng)公式的推導(dǎo),借助生活中豐富的典型實(shí)例,讓學(xué)生通過(guò)分析、推理、歸納等活動(dòng)過(guò)程,從中了解和體驗(yàn)等差數(shù)列的定義和通項(xiàng)公式。: 本節(jié)是第二章的基礎(chǔ),為以后學(xué)習(xí)等差數(shù)列求和、等比數(shù)列奠定基礎(chǔ)
2025-04-17 08:12
【總結(jié)】課時(shí)作業(yè)7 等差數(shù)列的性質(zhì)時(shí)間:45分鐘 滿分:100分課堂訓(xùn)練1.若一個(gè)數(shù)列的通項(xiàng)公式是an=k·n+b(其中b,k為常數(shù)),則下列說(shuō)法中正確的是( )A.?dāng)?shù)列{an}一定不是等差數(shù)列B.?dāng)?shù)列{an}是以k為公差的等差數(shù)列C.?dāng)?shù)列{an}是以b為公差的等差數(shù)列D.?dāng)?shù)列{an}不一定是等差數(shù)列【答案】 B【解析】 an+1-an=k(n+1)+b
2025-06-25 04:04
【總結(jié)】等差數(shù)列求和教學(xué)設(shè)計(jì) 一、教學(xué)目標(biāo): 1、知識(shí)與技能 (1)初步掌握一些特殊數(shù)列求其前n項(xiàng)和的常用方法. (2)通過(guò)把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列...
2024-12-07 01:18
【總結(jié)】數(shù)列A、等差數(shù)列知識(shí)點(diǎn)及例題一、數(shù)列由與的關(guān)系求由求時(shí),要分n=1和n≥2兩種情況討論,然后驗(yàn)證兩種情況可否用統(tǒng)一的解析式表示,若不能,則用分段函數(shù)的形式表示為?!祭礁鶕?jù)下列條件,確定數(shù)列的通項(xiàng)公式。分析:(1)可用構(gòu)造等比數(shù)列法求解;(2)可轉(zhuǎn)化后利用累乘法求解;(3)將無(wú)理問(wèn)題有理化,而后利用與的關(guān)系求解。解答:(1)(2)……累乘可
2025-06-25 02:06
【總結(jié)】第七章數(shù)列與數(shù)學(xué)歸納法等差數(shù)列等差數(shù)列問(wèn)題一數(shù)列{43}n?是等差數(shù)列嗎?{}anb?分析利用等差數(shù)列的定義:從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都是同一個(gè)常數(shù)*,naanbnN???設(shè)1()[(1)]nnaaanbanb???????問(wèn)題二
2025-07-25 16:55
【總結(jié)】§等差數(shù)列(1)一、由具體例子歸納等差數(shù)列的定義看下面的數(shù)列:4,5,6,7,8,9,10……;①3,0,-3,-6,……;②下面是全國(guó)統(tǒng)一鞋號(hào)中成年女鞋的各種尺碼(表示鞋長(zhǎng)、單位是cm)21,2
2025-04-29 03:27
【總結(jié)】第一篇:等差數(shù)列復(fù)習(xí)學(xué)案 友好三中高一數(shù)學(xué)學(xué)案設(shè)計(jì)人:劉磊組長(zhǎng)審核:設(shè)計(jì)時(shí)間:2009-3-1講授時(shí)間: 等差數(shù)列復(fù)習(xí) 一、學(xué)習(xí)目標(biāo): 1、通過(guò)學(xué)案能靈活運(yùn)用通項(xiàng)公式求等差數(shù)列的首項(xiàng)、公差、項(xiàng)...
2024-11-04 12:28
【總結(jié)】高二數(shù)學(xué)必修五《等差數(shù)列》專題訓(xùn)練一、選擇題:在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請(qǐng)把正確答案的代號(hào)填在題后的括號(hào)內(nèi)。1.若a≠b,數(shù)列a,x1,x2,b和數(shù)列a,y1,y2,b都是等差數(shù)列,則 ()A. B. C.1 D.2.在等差數(shù)列中,公差=1,=8,則=?。ā。?A.40
2025-04-04 05:17
【總結(jié)】第一篇:人教版等差數(shù)列教案 等差數(shù)列 本節(jié)課講述的是人教版高一數(shù)學(xué)(上)§(第一課時(shí))的內(nèi)容。 一、教材分析 1、教材的地位和作用: 數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而...
2025-10-14 05:35
【總結(jié)】若數(shù)列的前n項(xiàng)和記為Sn,即Sn=a1+a2+a3+……+an-1+anSn-1∴當(dāng)n≥2時(shí),有an=Sn-Sn-110歲的高斯(德國(guó))的算法:n首項(xiàng)與末項(xiàng)的和:1+100=101n第2項(xiàng)與倒數(shù)第2項(xiàng)的和:2+99=101n第3項(xiàng)與倒數(shù)第3項(xiàng)的和:3+98=101n………………………………………n
2025-08-15 20:31
【總結(jié)】????????100321:引例一德國(guó)數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆
2025-08-16 01:26
【總結(jié)】一、單選題1.已知等差數(shù)列an的前n項(xiàng)和Sn,且S10=4,則a3+a8=()A.2B.35C.45D.252.等差數(shù)列an的前n項(xiàng)和為Sn,若a3+a7+a11=12,則S13等于()A.58B.54C.56D.523.等差數(shù)列an中,a100且a11|a1
2025-08-05 15:30
【總結(jié)】五年級(jí)第三講等差數(shù)列及求和主講教師:?例:?(1)1,3,5,7,(),()?(2)6,10,14,18,(),()?(3)5,5,5,5,5,5,5,()?按一定次序排列的一列數(shù)稱為數(shù)列。數(shù)列中的每一個(gè)數(shù)都叫做這個(gè)數(shù)列的項(xiàng)。排在第一位的數(shù)稱為這個(gè)數(shù)列的
2025-04-29 02:51
【總結(jié)】主講老師:數(shù)列、等差數(shù)列復(fù)習(xí)知識(shí)框架圖數(shù)列一般數(shù)列特殊函數(shù)——等差數(shù)列通項(xiàng)公式遞推公式圖象法定義等差中項(xiàng)通項(xiàng)公式前n項(xiàng)和公式性質(zhì)定義分類基本概念基本題型題型一:求數(shù)列通項(xiàng)公式的問(wèn)題例1.已知數(shù)列{an}的首項(xiàng)a1=1,其遞推
2024-11-09 08:45