【總結(jié)】第四節(jié)一、函數(shù)單調(diào)性的判定法二、極大值與極小值函數(shù)的單調(diào)性與極值二、最大值與最小值一、單調(diào)性的判定xyo)(xfy?xyo)(xfy?abAB0()fx??0()fx??定理1().yfxI?設(shè)函數(shù)在區(qū)間內(nèi)可導(dǎo)abBA10()(
2024-12-08 00:44
【總結(jié)】課題:導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值科目:數(shù)學(xué)教學(xué)對(duì)象:高三課時(shí)第1課時(shí)提供者:段秀香單位:靜海第六中學(xué)一、教學(xué)內(nèi)容分析 現(xiàn)在中學(xué)數(shù)學(xué)新教材中,導(dǎo)數(shù)(選修2-2)處于一種特殊的地位,是高中數(shù)學(xué)知識(shí)的一個(gè)重要交匯點(diǎn),是聯(lián)系多個(gè)章節(jié)內(nèi)容以及解決相關(guān)問(wèn)題的重要工具。天津高考中必有考一道解答題(如2009-2011年常規(guī)題或2012-2014年壓軸題)和一道選擇
2025-04-17 00:39
【總結(jié)】導(dǎo)數(shù)在函數(shù)的單調(diào)性、極值中的應(yīng)用一、知識(shí)梳理1.函數(shù)的單調(diào)性與導(dǎo)數(shù)在區(qū)間(a,b)內(nèi),函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系:如果f_′(x)0,那么函數(shù) y=f(x)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果f_′(x)0,那么函數(shù) y=f(x)在這個(gè)區(qū)間內(nèi)單調(diào)遞減;如果f_′(x)=0,那么 f(x)在這個(gè)區(qū)間內(nèi)為常數(shù).問(wèn)題探究1:若函數(shù) f(x)在(a,b)內(nèi)
2025-08-04 07:33
【總結(jié)】函數(shù)的單調(diào)性與奇偶性一.基礎(chǔ)練習(xí):1.求下列函數(shù)的單調(diào)區(qū)間:(1)223xxy???(2)2212???xxy2.判斷下列函數(shù)奇偶性:(1)|32||32|)(????xxxf(2)2|2|1)(2????xxxf12?x(x0)
2024-11-10 23:50
【總結(jié)】討論函數(shù)單調(diào)性的教學(xué)案例歐陽(yáng)志文摘要:在各地高考試題中涉及“分類(lèi)討論”的問(wèn)題必不能少,因?yàn)檫@類(lèi)試題不僅考查我們的數(shù)學(xué)基本知識(shí)與方法,而且考查了我們思維的深刻性。本文主要以高考熱點(diǎn)和難點(diǎn)“函數(shù)單調(diào)性的討論”為例,展示分類(lèi)討論思想在解題中的順其自然。需要分類(lèi)討論的題型通常是因?yàn)轭}設(shè)少了條件致使解答無(wú)法繼續(xù)進(jìn)行,所以只能增加條件滿足解題的內(nèi)在需求,使解題可以繼續(xù)。關(guān)
2025-06-07 22:37
【總結(jié)】第一篇:函數(shù)的單調(diào)性 函數(shù)的單調(diào)性說(shuō)課稿(市級(jí)一等獎(jiǎng))函數(shù)單調(diào)性說(shuō)課稿《函數(shù)的單調(diào)性》說(shuō)課稿(市級(jí)一等獎(jiǎng))旬陽(yáng)縣神河中學(xué)詹進(jìn)根 我說(shuō)課的課題是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)必修1》第二章第三節(jié)——函...
2024-11-04 01:37
【總結(jié)】第三節(jié)一、函數(shù)單調(diào)性的判定法二、簡(jiǎn)單應(yīng)用函數(shù)的單調(diào)性第三章2x1()fx2()fxy=?(x)oxxyyo1x1x2x1()fx2()fxy=?(x)用定義來(lái)判斷函數(shù)的單調(diào)性有比較法、比值法.但繁!下面討論如何用導(dǎo)數(shù)來(lái)判斷函數(shù)的單調(diào)性.反之
2025-02-21 12:40
【總結(jié)】函數(shù)的單調(diào)性(一)一、選擇題:1.在區(qū)間(0,+∞)上不是增函數(shù)的函數(shù)是 () A.y=2x+1 B.y=3x2+1 C.y= D.y=2x2+x+12.函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞]上是增函數(shù),在區(qū)間(-∞,-2)上是減函數(shù),則f(1)等于 () A.-7 B.1 C.17 D.259.函數(shù)的遞增區(qū)間依次
2025-06-18 20:32
【總結(jié)】函數(shù)的單調(diào)性與最值一、知識(shí)梳理1.增函數(shù)、減函數(shù)一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮,區(qū)間D?I,如果對(duì)于任意x1,x2∈D,且x1f(x2).2.單調(diào)區(qū)間的定義若函數(shù)y=f(x)在區(qū)間D上是增函數(shù)或減函數(shù),則稱(chēng)函數(shù)y=
2025-03-24 12:17
【總結(jié)】函數(shù)的單調(diào)性北京市蘋(píng)果園中學(xué)畢燁目錄學(xué)生情況分析2教學(xué)目標(biāo)分析3教學(xué)重難點(diǎn)分析4教學(xué)內(nèi)容分析1教學(xué)方法分析5教學(xué)過(guò)程設(shè)計(jì)6目錄學(xué)生情況分析2教學(xué)目標(biāo)分析3教學(xué)重難點(diǎn)分析4教學(xué)內(nèi)容分析1教學(xué)方法分析
2025-07-18 11:02
【總結(jié)】第一篇:函數(shù)的單調(diào)性(教案) 函數(shù)的單調(diào)性(教案) 一、教學(xué)目標(biāo) 1、使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法。 2、通過(guò)對(duì)函數(shù)單調(diào)...
2024-10-29 15:22
【總結(jié)】奎屯王新敞新疆知識(shí)回顧1、一般地,設(shè)函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)可導(dǎo),則函數(shù)在該區(qū)間如果f′(x)0,如果f′(x)0,則f(x)為增函數(shù);則f(x)為減函數(shù).2、用導(dǎo)數(shù)法確定函數(shù)的單調(diào)性時(shí)的步驟是:(1)(3)求
2024-11-17 17:38
【總結(jié)】教學(xué)目標(biāo)?:掌握用導(dǎo)數(shù)的符號(hào)判別函數(shù)增減性的方法,提高對(duì)導(dǎo)數(shù)與微分的學(xué)習(xí)意義的認(rèn)識(shí).?:訓(xùn)練解題方法,培養(yǎng)解題能力。?:能用普遍聯(lián)系的觀點(diǎn)看待事物,抓住引起事物變化的主要因素。?:數(shù)學(xué)方法的廣泛應(yīng)用之美,數(shù)學(xué)內(nèi)容的統(tǒng)一性。重點(diǎn):利用導(dǎo)數(shù)的符號(hào)確定函數(shù)的單調(diào)區(qū)間。難點(diǎn):利用導(dǎo)數(shù)的符號(hào)確定函數(shù)的單調(diào)區(qū)間.單調(diào)性的概念
2024-11-06 23:03
【總結(jié)】第一篇:《函數(shù)的單調(diào)性》說(shuō)課稿 《函數(shù)的單調(diào)性》說(shuō)課稿 北大附中深圳南山分校:馬立明 一、教材分析-----教學(xué)內(nèi)容、地位和作用本課是蘇教版新課標(biāo)普通高中數(shù)學(xué)必修一第二章第1節(jié)《函數(shù)的簡(jiǎn)單性質(zhì)》...
2024-10-29 06:33
【總結(jié)】復(fù)合函數(shù)單調(diào)性的求法與含參數(shù)問(wèn)題若,又,且值域與定義域的交集不空,則函數(shù)叫的復(fù)合函數(shù),其中叫外層函數(shù),叫內(nèi)層函數(shù),簡(jiǎn)而言之,所謂復(fù)合函數(shù)就是由一些初等函數(shù)復(fù)合而成的函數(shù)。對(duì)于有關(guān)復(fù)合函數(shù)定義域問(wèn)題我們可以分成以下幾種常見(jiàn)題型:(一)求復(fù)合函數(shù)表達(dá)式例1、(1)設(shè)f(x)=2x-3g(x)=x2+2求f[g(x)](或g[f(x)])。(2)已知:f(x)=
2025-03-25 00:18