【總結(jié)】導(dǎo)數(shù)問題例.xfxffxyyfxfyxfyx2)0()()0(2)()()(,,??????????存在,證明且有設(shè)例0()()limyfxhfxh???(即求)證在xyyfxfyxf2)()()(????中令0?y有)0()()(fxfxf??0)0(??
2024-10-16 11:44
【總結(jié)】1Lebesgue積分的極限定理nff若每個(gè)都可積,則是否可積?已接觸的例子?在Riemann積分或Lebesgue積分框架下考慮問題:在Riemann積分框架下,要附加很強(qiáng)條件,使得積分與極限可以交換次序,而在Lebesgue積分框架下,條件很弱!??nf.f設(shè)是函數(shù)列且按照某種意義收斂到fn
2025-01-19 09:29
【總結(jié)】第一篇:不定積分,二元函數(shù)的定義域,極限,方向?qū)?shù)和梯度 不定積分、二元函數(shù)的定義域、極限、方向?qū)?shù)和梯度 一、定積分及應(yīng)用 ⒈了解定積分的概念;知道定積分的定義、幾何意義和物理意義;了解定積分...
2024-10-21 17:22
【總結(jié)】上一頁下一頁導(dǎo)數(shù)與微分習(xí)題課1.理解導(dǎo)數(shù)(含左導(dǎo)數(shù)、右導(dǎo)數(shù))和微分的定義及其幾何意義.7.知道一元函數(shù)可微、可導(dǎo)、連續(xù)、極限存在之間的關(guān)系:本章的計(jì)算重點(diǎn)是求函數(shù)的導(dǎo)數(shù).?可導(dǎo)?連續(xù)?極限存在.可微6.掌握隱函數(shù)的求導(dǎo)法及由參數(shù)方程表示的函數(shù)的求導(dǎo)法.5.了解高階導(dǎo)數(shù)的概念,能熟練地
2024-11-03 20:18
【總結(jié)】作業(yè)(一)————函數(shù),極限和連續(xù)一、填空題(每小題2分,共20分) ?。鸢福禾崾荆簩?duì)于,要求分母不能為0,即,也就是;對(duì)于,要求,即;所以函數(shù)的定義域是2.函數(shù)的定義域是 ?。鸢福禾崾荆簩?duì)于,要求分母不能為0,即,也就是;對(duì)于,要求,即;所以函數(shù)的定義域是 .答案:提示:對(duì)于,要求分母不能為0,即,也
2025-06-20 05:31
【總結(jié)】第一節(jié)導(dǎo)數(shù)的概念一、導(dǎo)數(shù)概念的引出1.變速直線運(yùn)動(dòng)的速度設(shè)描述質(zhì)點(diǎn)運(yùn)動(dòng)位置的函數(shù)為0t則到的平均速度為00)()(tttstsv???而在時(shí)刻的瞬時(shí)速度為00)()(lim0tttstsvtt????221tg
2025-04-21 05:05
【總結(jié)】本節(jié)內(nèi)容用MATLAB求極限用MATLAB求導(dǎo)數(shù)用MATLAB求積分用MATLAB求極值、最值1、用MATLAB軟件求極限2x01cosx.limx??例求特別地,當(dāng)a=0時(shí)有:解:symsx%定義變量
2024-10-16 12:42
【總結(jié)】復(fù)數(shù)、極限、導(dǎo)數(shù)過關(guān)練習(xí)(1)復(fù)數(shù)在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于()A第一象限B第二象限C第三象限D(zhuǎn)第四象限D(zhuǎn)(2)若復(fù)數(shù)Z與它的共軛復(fù)數(shù)滿足AC5100!BDD能力提高
2024-11-11 02:53
【總結(jié)】微積分極限法問題詳析沈衛(wèi)國(西北工業(yè)大學(xué)前邏輯與人工智能研究所,西安710072)摘要:為了解決牛頓、萊布尼茲求導(dǎo)法所產(chǎn)生的貝克萊悖論問題,微積分極限法(標(biāo)準(zhǔn)分析)被提出。但后者成立的前提是這個(gè)極限必須存在。筆者經(jīng)分析得到結(jié)論,增量比值
2025-06-07 19:22
【總結(jié)】高三數(shù)學(xué)導(dǎo)數(shù)與積分經(jīng)典例題以及答案一.教學(xué)內(nèi)容:導(dǎo)數(shù)與積分二.重點(diǎn)、難點(diǎn):1.導(dǎo)數(shù)公式: 2.運(yùn)算公式3.切線,過P()為切點(diǎn)的的切線,4.單調(diào)區(qū)間不等式,解為的增區(qū)間,解為的減區(qū)間。5.極值(1)時(shí),,時(shí),∴為極大值(2)時(shí),時(shí),∴為的極小值。
2025-06-18 08:53
【總結(jié)】一、函數(shù)極限的定義三、小結(jié)思考題二、函數(shù)極限的性質(zhì)第二節(jié)函數(shù)的極限一、函數(shù)極限的定義在自變量的某個(gè)變化過程中,如果對(duì)應(yīng)的函數(shù)值無限接近于某個(gè)確定的常數(shù),那么這個(gè)確定的數(shù)叫做自變量在這一變化過程中函數(shù)的極限。下面,我們將主要研究以下兩種情形:;的變化情形對(duì)應(yīng)的函數(shù)值任意接近于有限值自
2025-08-21 12:44
【總結(jié)】第四章初等函數(shù)的導(dǎo)數(shù)與積分4-1對(duì)數(shù)函數(shù)的導(dǎo)數(shù)與積分4-2指數(shù)函數(shù)的導(dǎo)數(shù)與積分4-3三角函數(shù)的導(dǎo)數(shù)與積分1.對(duì)數(shù)2.對(duì)數(shù)微分3.對(duì)數(shù)函數(shù)的積分4-1對(duì)數(shù)函數(shù)的導(dǎo)數(shù)與積分對(duì)數(shù)在對(duì)數(shù)函數(shù)f(x)=logax中:(1)若底數(shù)a=10,我們稱其為常用對(duì)數(shù)函數(shù),
2025-07-21 19:54
【總結(jié)】一、問題的提出二、導(dǎo)數(shù)的定義四、函數(shù)可導(dǎo)性與連續(xù)性的關(guān)系五、小結(jié)思考題三、導(dǎo)數(shù)的幾何意義第一節(jié)導(dǎo)數(shù)概念一、問題的提出0tt?,0時(shí)刻的瞬時(shí)速度求tt考慮最簡(jiǎn)單的變速直線運(yùn)動(dòng)--自由落體運(yùn)動(dòng),如圖,,0tt的時(shí)刻取一鄰近于,?運(yùn)動(dòng)時(shí)間ts???v平均速度
2025-08-21 12:41
【總結(jié)】第四節(jié)極限運(yùn)算法則定理1.0,)()(lim)3(;)]()(lim[)2(;)]()(lim[)1(,)(lim,)(lim??????????BBAxgxfBAxgxfBAxgxfBxgAxf其中則設(shè)證.)(lim,)(limBxgAxf???.0,0.)(,)
2025-04-21 04:02
【總結(jié)】§高階導(dǎo)數(shù).),()(),()(它的可導(dǎo)性點(diǎn)的函數(shù),仍可以考察內(nèi)的作為內(nèi)可導(dǎo),則它的導(dǎo)函數(shù)在設(shè)xbaxfbaxfy??,)()(,)(,)(0000點(diǎn)的二階導(dǎo)數(shù)在點(diǎn)的導(dǎo)數(shù)為在且稱點(diǎn)二階可導(dǎo)在則稱點(diǎn)可導(dǎo)在若xxfyxxfyxxfyxxfy????????.)dd,dd,()(
2025-04-29 02:10