【總結(jié)】本節(jié)內(nèi)容用MATLAB求極限用MATLAB求導(dǎo)數(shù)用MATLAB求積分用MATLAB求極值、最值1、用MATLAB軟件求極限2x01cosx.limx??例求特別地,當(dāng)a=0時(shí)有:解:symsx%定義變量
2024-10-16 12:42
【總結(jié)】復(fù)數(shù)、極限、導(dǎo)數(shù)過關(guān)練習(xí)(1)復(fù)數(shù)在復(fù)平面內(nèi)的對應(yīng)點(diǎn)位于()A第一象限B第二象限C第三象限D(zhuǎn)第四象限D(zhuǎn)(2)若復(fù)數(shù)Z與它的共軛復(fù)數(shù)滿足AC5100!BDD能力提高
2024-11-11 02:53
【總結(jié)】微積分極限法問題詳析沈衛(wèi)國(西北工業(yè)大學(xué)前邏輯與人工智能研究所,西安710072)摘要:為了解決牛頓、萊布尼茲求導(dǎo)法所產(chǎn)生的貝克萊悖論問題,微積分極限法(標(biāo)準(zhǔn)分析)被提出。但后者成立的前提是這個(gè)極限必須存在。筆者經(jīng)分析得到結(jié)論,增量比值
2025-06-07 19:22
【總結(jié)】高三數(shù)學(xué)導(dǎo)數(shù)與積分經(jīng)典例題以及答案一.教學(xué)內(nèi)容:導(dǎo)數(shù)與積分二.重點(diǎn)、難點(diǎn):1.導(dǎo)數(shù)公式: 2.運(yùn)算公式3.切線,過P()為切點(diǎn)的的切線,4.單調(diào)區(qū)間不等式,解為的增區(qū)間,解為的減區(qū)間。5.極值(1)時(shí),,時(shí),∴為極大值(2)時(shí),時(shí),∴為的極小值。
2025-06-18 08:53
【總結(jié)】一、函數(shù)極限的定義三、小結(jié)思考題二、函數(shù)極限的性質(zhì)第二節(jié)函數(shù)的極限一、函數(shù)極限的定義在自變量的某個(gè)變化過程中,如果對應(yīng)的函數(shù)值無限接近于某個(gè)確定的常數(shù),那么這個(gè)確定的數(shù)叫做自變量在這一變化過程中函數(shù)的極限。下面,我們將主要研究以下兩種情形:;的變化情形對應(yīng)的函數(shù)值任意接近于有限值自
2025-08-21 12:44
【總結(jié)】第四章初等函數(shù)的導(dǎo)數(shù)與積分4-1對數(shù)函數(shù)的導(dǎo)數(shù)與積分4-2指數(shù)函數(shù)的導(dǎo)數(shù)與積分4-3三角函數(shù)的導(dǎo)數(shù)與積分1.對數(shù)2.對數(shù)微分3.對數(shù)函數(shù)的積分4-1對數(shù)函數(shù)的導(dǎo)數(shù)與積分對數(shù)在對數(shù)函數(shù)f(x)=logax中:(1)若底數(shù)a=10,我們稱其為常用對數(shù)函數(shù),
2025-07-21 19:54
【總結(jié)】一、問題的提出二、導(dǎo)數(shù)的定義四、函數(shù)可導(dǎo)性與連續(xù)性的關(guān)系五、小結(jié)思考題三、導(dǎo)數(shù)的幾何意義第一節(jié)導(dǎo)數(shù)概念一、問題的提出0tt?,0時(shí)刻的瞬時(shí)速度求tt考慮最簡單的變速直線運(yùn)動(dòng)--自由落體運(yùn)動(dòng),如圖,,0tt的時(shí)刻取一鄰近于,?運(yùn)動(dòng)時(shí)間ts???v平均速度
2025-08-21 12:41
【總結(jié)】第四節(jié)極限運(yùn)算法則定理1.0,)()(lim)3(;)]()(lim[)2(;)]()(lim[)1(,)(lim,)(lim??????????BBAxgxfBAxgxfBAxgxfBxgAxf其中則設(shè)證.)(lim,)(limBxgAxf???.0,0.)(,)
2025-04-21 04:02
【總結(jié)】§高階導(dǎo)數(shù).),()(),()(它的可導(dǎo)性點(diǎn)的函數(shù),仍可以考察內(nèi)的作為內(nèi)可導(dǎo),則它的導(dǎo)函數(shù)在設(shè)xbaxfbaxfy??,)()(,)(,)(0000點(diǎn)的二階導(dǎo)數(shù)在點(diǎn)的導(dǎo)數(shù)為在且稱點(diǎn)二階可導(dǎo)在則稱點(diǎn)可導(dǎo)在若xxfyxxfyxxfyxxfy????????.)dd,dd,()(
2025-04-29 02:10
【總結(jié)】一、夾逼準(zhǔn)則二、單調(diào)有界收斂準(zhǔn)則四、小結(jié)思考題極限存在準(zhǔn)則兩個(gè)重要極限第五節(jié)三、連續(xù)復(fù)利連續(xù)復(fù)利一、夾逼準(zhǔn)則準(zhǔn)則Ⅰ如果數(shù)列nnyx,及nz滿足下列條件:,lim,lim)2()3,2,1()1(azaynzxynnnnnnn?????
2025-08-21 12:38
【總結(jié)】一、高階導(dǎo)數(shù)的定義二、高階導(dǎo)數(shù)的求導(dǎo)法則三、小結(jié)思考題第三節(jié)高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義問題:變速直線運(yùn)動(dòng)的加速度.),(tfs?設(shè))()(tftv??則瞬時(shí)速度為的變化率對時(shí)間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(
2025-08-21 12:37
【總結(jié)】二、二階導(dǎo)數(shù)的應(yīng)用函數(shù)極值的判定[定理]如果函數(shù)f(x)在x0附近有連續(xù)的二階導(dǎo)數(shù)f"(x),且f'(x0)=0,f"(x)≠0,那么⑴若f"(x0)<0,則函數(shù)f(x)在點(diǎn)x0處取得極大值⑵若f"(x0)>0,則函數(shù)f(x)在點(diǎn)x0處取得極小值
2025-05-14 21:46
【總結(jié)】xyo1.設(shè)()lnfxxx?,若0'()2fx?,則0x?()導(dǎo)數(shù)微積分練習(xí)題高二數(shù)學(xué)試題第4頁共4頁1.設(shè),若,則()A.B.C.D.2.已知函數(shù),其導(dǎo)函數(shù)的圖象如圖所示,則A.在(-∞,0)上為減函數(shù)B.在
2025-01-07 18:49
【總結(jié)】三角函數(shù)誘導(dǎo)公式tgA=tanA=sin(-a)=cosasin(+a)=cosasin(π-a)=sinasin(π+a)=-sinacos(-a)=cosacos(-a)=sinacos(+a)=-sinacos(π-a)=-cosacos(π+a)=-cosa
2025-06-23 18:29
【總結(jié)】高等數(shù)學(xué)教案變上限定積分函數(shù)及其導(dǎo)數(shù)教學(xué)內(nèi)容:變上限定積分函數(shù)及其導(dǎo)數(shù)。知識(shí)目標(biāo):使學(xué)生掌握變上限定積分函數(shù)的定義;使學(xué)生了解原函數(shù)存在定理的證明;使學(xué)生會(huì)熟練運(yùn)用原函數(shù)存在定理求導(dǎo)數(shù)。情感目標(biāo):通過原函數(shù)存在定理體會(huì)積分和微分之間
2025-06-07 17:22