【總結】中值定理洛必達法則函數的單調性與極值函數圖形的描繪導數在經濟中的應用結束第3章中值定理、導數應用前頁結束后頁定理1設函數滿足下列條件)(xf)()(bfaf?(3)(1)在閉區(qū)間
2025-02-21 10:32
【總結】一、平面及其方程二、直線及其方程三、小結思考題第四節(jié)平面與直線一、平面(plane)及其方程(equation)xyzo0MM如果一非零向量垂直于一平面,這向量就叫做該平面的法線向量.法線向量的特征:垂直于平面內的任一向量.已知},,,{CBAn??),,,(000
2025-08-21 12:41
【總結】一、夾逼準則二、單調有界收斂準則四、小結思考題極限存在準則兩個重要極限第五節(jié)三、連續(xù)復利連續(xù)復利一、夾逼準則準則Ⅰ如果數列nnyx,及nz滿足下列條件:,lim,lim)2()3,2,1()1(azaynzxynnnnnnn?????
2025-08-21 12:38
【總結】一、柱面與旋轉曲面二、二次曲面三、小結思考題第五節(jié)曲面及其方程本節(jié)只對一些常見的曲面,圍繞下面兩個基本問題進行討論:(Ⅱ)已知坐標間的關系式,研究曲面形狀.(討論柱面(cylinder)、旋轉曲面(rotatingsurface))(討論二次曲面(twicesurface))(Ⅰ)已知曲面作為點的軌
2025-08-11 11:12
【總結】一、問題的提出二、Pn和Rn的確定四、簡單應用五、小結思考題三、泰勒中值定理第五節(jié)泰勒(Taylor)公式一、問題的提出1.設)(xf在0x處連續(xù),則有2.設)(xf在0x處可導,則有例如,當x很小時,xex??1,xx??)1ln([???)
【總結】一、函數極限的定義三、小結思考題二、函數極限的性質第二節(jié)函數的極限一、函數極限的定義在自變量的某個變化過程中,如果對應的函數值無限接近于某個確定的常數,那么這個確定的數叫做自變量在這一變化過程中函數的極限。下面,我們將主要研究以下兩種情形:;的變化情形對應的函數值任意接近于有限值自
2025-08-21 12:44
【總結】二、高階導數的運算法則第三節(jié)一、高階導數的概念機動目錄上頁下頁返回結束高階導數第二章一、高階導數的概念速度即sv??加速度即)(???sa引例:變速直線運動機動目錄上頁下頁返回結束定義.若函數
2025-04-29 01:58
【總結】主要內容典型例題第五章不定積分習題課積分法原函數選擇u有效方法基本積分表第一換元法第二換元法直接積分法分部積分法不定積分幾種特殊類型函數的積分一、主要內
【總結】一、換元公式二、小結思考題第四節(jié)定積分的換元法定理假設(1))(xf在],[ba上連續(xù);(2)函數)(tx??在],[??上是單值的且有連續(xù)導數;(3)當t在區(qū)間],[??上變化時,)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則
2025-08-11 16:42
【總結】二、二階導數的應用函數極值的判定[定理]如果函數f(x)在x0附近有連續(xù)的二階導數f"(x),且f'(x0)=0,f"(x)≠0,那么⑴若f"(x0)<0,則函數f(x)在點x0處取得極大值⑵若f"(x0)>0,則函數f(x)在點x0處取得極小值
2025-05-14 21:46
2025-05-14 21:42
【總結】1引例:一塊長方形的金屬板,四個頂點的坐標是(1,1),(5,1),(1,3),(5,3).在坐標原點處有一個火焰,它使金屬板受熱.假定板上任意一點處的溫度與該點到原點的距離成反比.在(3,2)處有一個螞蟻,問這只螞蟻應沿什么方向爬行才能最快到達較涼快的地點?問題的實質:應沿由熱變冷變化最驟烈的方向(即梯度方向)爬行.第七節(jié)方
2025-08-05 18:34
【總結】第五節(jié)函數關系的建立例1在一條直線公路的一側有A、B兩村,其位置如圖1-1所示,公共汽車公司欲在公路上建立汽車站M.A、B兩村各修一條直線大道通往汽車站,設CM=x(km),試把A、B兩村通往M的大道總長y(km)表示為x的函數.ABCDM2kmx
2025-08-21 12:45
【總結】主要內容典型例題習題課第二章極限(一)極限的概念(二)連續(xù)的概念一、主要內容左右極限兩個重要極限求極限的常用方法無窮小的性質極限存在的充要條件判定極限存在的準則無窮小的比較極限的性質數列極限函
2025-08-21 12:39
【總結】一、隱函數的導數三、小結思考題二、由參數方程所確定的函數的導數第四節(jié)隱函數及由參數方程所確定的函數的導數一、隱函數的導數定義:.)(0),(稱為隱函數所確定的函數由方程xyyyxF??.)(形式稱為顯函數xfy?0),(?yxF)(xfy?隱函數的顯化問題:隱函數不易顯
2025-08-22 01:20